Рекомендации Рекомендации по расчету и конструированию сплошных плит перекрытий крупнопанельных зданий
Настоящие Рекомендации составлены в развитие СНиП 2.03.01-84 и содержат методы расчета и конструирования опертых по контуру и трем сторонам сплошных плит перекрытий крупнопанельных зданий. Расчет плит на действие эксплуатационных нагрузок производится с учетом пространственной работы. При расчете по деформациям в зданиях с платформенными стыками учитывается защемление в них перекрытий. Методика расчета иллюстрируется примерами.
Дата актуализации: 01.01.2009
Государственный комитет по архитектуре и градостроительству при Госстрое СССР
Центральный ордена Трудового Красного Знамени научно-исследовательский и проектный институт типового и экспериментального проектирования жилища (ЦНИИЭП жилища)
РЕКОМЕНДАЦИИ ПО РАСЧЕТУ И КОНСТРУИРОВАНИЮ СПЛОШНЫХ ПЛИТ ПЕРЕКРЫТИЙ КРУПНОПАНЕЛЬНЫХ ЗДАНИЙ
Утверждены председателем Научно- технического совета, директором института С.В. Николаевым (протокол № 11 от 25 мая 1989 г.).
Москва 1989 г.
Содержание
ОСНОВНЫЕ БУКВЕННЫЕ ОБОЗНАЧЕНИЯ ВВЕДЕНИЕ 1. ОБЩИЕ ПОЛОЖЕНИЯ 2. РАСЧЕТ ПРОЧНОСТИ 3. РАСЧЕТ ПЛИТ ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ ВТОРОЙ ГРУППЫ 4. ОСОБЕННОСТИ РАСЧЕТА ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННЫХ ПЛИТ 5. РАСЧЕТ ПЛИТ НА МОНТАЖНЫЕ ВОЗДЕЙСТВИЯ 6. ОСОБЕННОСТИ КОНСТРУИРОВАНИЯ ПЛИТ Приложение 1 ОБОСНОВАНИЯ И ПОЯСНЕНИЯ НЕКОТОРЫХ РАСЧЕТНЫХ ПОЛОЖЕНИЙ Приложение 2 ПАРАМЕТРЫ ВИРТУАЛЬНЫХ РАБОТ МЕСТНЫХ НАГРУЗОК Приложение 3 ОРИЕНТИРОВОЧНЫЕ ПАРАМЕТРЫ РАБОЧЕЙ АРМАТУРЫ ПЛИТ ПЕРЕКРЫТИЙ Литература |
Настоящие Рекомендации составлены в развитие СНиП 2.03.01-84 и содержат методы расчета и конструирования опертых по контуру и трем сторонам сплошных плит перекрытий крупнопанельных зданий. Расчет плит на действие эксплуатационных нагрузок производится с учетом пространственной работы. При расчете по деформациям в зданиях с платформенными стыками учитывается защемление в них перекрытий. Методика расчета иллюстрируется примерами.
Автор Рекомендаций — канд. техн. наук В.С. Зырянов.
Геометрические характеристики
l1 — короткий пролет плит, опертых по контуру, и пролет вдоль свободного края плит, опертых, по трем сторонам (см; м);
l2 — пролет в перпендикулярном к U направлении (см; м);
λ — отношение пролетов: λ = l2/l1;
h — толщина плиты (см);
γ — относительная гибкость; γ = l1/h
Характеристики армирования
Аs1 — суммарная площадь арматуры вдоль пролета l1 (см2);
As2 — то же, вдоль пролета l2 (см2);
as1, as2 — площади арматуры, соответствующие Аs1 и As2 на 1м сечения плиты (см2);
Аs11 — часть арматуры , пересекающая сечение плиты EF(см2);
Аs1 — то же, пересекающая остальную часть сечения 1-1 (см2);
as11, as12 — площади арматуры, соответствующие Аs11 и Аs12 , на 1 м сечения плиты (см2);
φc — коэффициент концентрации арматуры у центра плиты, опертой по контуру, или у свободного края плиты, опертой по трем сторонам; φc = as11/as12;
h01, h02 — рабочие высоты арматуры соответственно Аs1 и As2 (см);
Нагрузки
а) равномерно распределенные по площади (кПа)
q — расчетная;
qn — полная нормативная;
ql — полная длительно действующая нормативная;
qw — нормативная от собственного веса;
Ps — нормативная от веса перегородок (панельных), сантехоборудования (сантехкабин), передаваемая до защемления перекрытий стенами;
Рr — нормативная от веса перегородок (мелкоштучных) сантехоборудования («россыпью»), конструкций пола, передаваемая после защемления перекрытий стенами;
Рn — полная временная;
Pl — длительно действующая временная;
qs, qr, qrl — сочетания нагрузок для расчетов по образованию трещин и деформациям.
б) линейные (кН/м)
— действующие аналогично qn, ql
в) сосредоточенные (кН)
Qi, — то же.
Действующие усилия
Msp — момент в пролете от нормативной нагрузки на 1 м в сечении 1-1 в центре при опирании по контуру и у свободного края при опирании по трем сторонам;
Msup — то же в опорных сечениях;
m — отношение максимальных моментов на 1 м сечений, нормальных к пролетам l2 и l1; m = m2/m1;
αi- табличные коэффициенты для определения моментов Мi.
Внутренние усилия
— предельный момент усилий в арматуре, пересекающей сечение EF , относительно приведенного центра тяжести сжатой зоны деформированной плиты (кНм);
— то же, обобщенный момент усилий в арматуре, пересекающей сечения АЕ , BF , CF, DE (кНм);
— предельный момент усилий в арматуре, пересекающей сечение 1-1, для недеформированной схемы (кНм);
— то же, в сечении 11-11 (кНм);
Ksp — коэффициент, учитывающий повышение прочности при расчете плит, опертых по контуру, с учетом пространственной работы;
Кc — коэффициент, учитывающий эффект концентрации арматуры у свободного края плит, опертых по трем сторонам;
xi — высоты сжатых зон (см);
d — расстояние от верха недеформированной плиты до центра тяжести сжатой зоны деформированной плиты (см);
Zi — плечи внутренних сил деформированной плиты (см);
Мcrc — момент трещинообразования (кНм);
Nsi — равнодействующие усилий в арматуре i-го направления (кН).
Несущая способность (кПа)
qul — предельная нагрузка по прочности;
qul,2 — то же, при характеристиках материалов, соответствующих расчету по предельным состояниям второй группы.
Трещиностойкость (кПа)
qcrc — нагрузка в момент образования трещин;
qscrc — то же при свободном (шарнирном) опирании.
Прогибы
f — прогиб от нормативной длительной нагрузки (см);
fcrc — прогиб перед образованием трещин (см);
ful — прогиб в предельном состоянии по прочности (см);
ful,2 — то же, при характеристиках материалов для предельных состояний второй группы (см);
— кривизна сечения АЕ … ДЕ в предельном состоянии по прочности (1/см);
— то же, при характеристиках материалов для предельных состояний второй группы (1/см);
Кr — коэффициент, учитывающий влияние защемления опорного контура на ful,2
Kf — коэффициент, учитывающий отличие величины ful,2 в центре плит, опертых по контуру, и в середине свободного края плит, опертых по трем сторонам, от величины ful,2 в точках пересечения линий излома;
βi — табличные коэффициенты для определения прогиба плит в упругой стадии;
d — отношение модулей упругости арматуры и бетона;
ξul — относительная высота сжатой зоны в сечениях АЕ…ДЕ в предельном состоянии по прочности;
ξul,2 — то же, при характеристиках материалов для предельных состояний второй группы;
ξсгс — относительная высота сжатой зоны после образования трещин;
η — коэффициент, учитывающий возможные отклонения в толще защитного слоя арматуры.
Перекрытия в крупнопанельных жилых домах в большинстве случаев выполняют из сплошных железобетонных плит размером на комнату или на половину конструктивной ячейки, опертых по контуру или трем сторонам и работающих в двух направлениях.
В ЦНИИЭП жилища разработан новый метод расчета этих плит, учитывающий их пространственную работу и позволяющий снизить расход материалов . В отличие от существующего новый метод учитывает изменение геометрии плиты в процессе деформирования и увеличение в связи с этим плеч и моментов внутренних сил в расчетных сечениях за счет прогибов.
Учитывается также положительное влияние защемления плит в платформенных стыках, что принимается во внимание при расчетах по предельным состояниям второй группы и позволяет во многих случаях полностью использовать эффект пространственной работы при расчете прочности.
После определения моментов все остальные расчеты выполняются в полном соответствии с действующими СНиП 2.03.01-84. При использовании нового метода прочность по расчету увеличивается от 5 до 20 % в зависимости от отношения пролетов и относительной гибкости плит. Соответственно может быть снижен расход стали .
Разработанный метод расчета базируется на теории предельного равновесия. Его эффективность и надежность подтверждены многочисленными опытами, проведенными как в лабораторных условиях, так и на натурных образцах плит серий 75, 83, 90, 91, 93, 121, 135.
Расчет плит по новому методу был представлен в «Рекомендациях по расчету плит перекрытий крупнопанельных зданий с учетом пространственной работы» и прошел широкую апробацию во многих проектных организациях страны. Настоящее издание Рекомендаций предпринято в связи с выходом СНиП 2.03.01-84 и СНиП 2.01.07-85 и введением в них новой системы обозначений. В новой редакции Рекомендаций наиболее важными дополнениями являются:
— более широкое варьирование отношений арматуры в двух направлениях и коэффициента концентрации арматуры;
— учет эффекта концентрации арматуры у свободного края плит, опертых по трем сторонам;
— новая методика учета неравномерных нагрузок от санитарно-технических кабин объемно-блочной конструкции (п. 2.10);
— расчет по предельным состояниям второй группы при qcrc < qs (п.п. 3.4 — 3.6);
— расчет прогибов плит, опертых по трем сторонам, с участками у свободного края, работающими по балочной схеме, и балочных плит с трещинами в растянутой зоне (п. 3.6);
— расчет на монтажные воздействия (раздел 5).
1.1. Рекомендации распространяются на проектирование железобетонных перекрытий сборных крупнопанельных жилых и общественных зданий из бетона класса по прочности на сжатие В12,5 и выше.
1.2. При расчете по предельным состояниям первой группы (на прочность) моменты защемления в платформенных стыках не учитываются.
1.3. При расчете по предельным состояниям второй группы (трещиностойкость, раскрытие трещин, прогибы) защемление в платформенных стыках учитывается для всех междуэтажных перекрытий при применении раствора швов проектной марки «100» и выше.
1.4. Получаемые из расчета значения несущей способности и моментов трещинообразования делятся, а прогибов и раскрытия трещин умножаются на коэффициент надежности по назначению γn. В формулы для подбора арматуры включена величина γn = 0,95.
1.5. Временные нагрузки на плиты, а также коэффициенты надежности по нагрузкам и по назначению здания принимаются по СНиП 2.01.07-85 постоянные нагрузки — по проекту.
Подбор арматуры свободно опертых плит
2.1. Свободно опертыми считаются плиты, у которых имеющиеся в их плоскости по контуру связи относительно слабые и их работой можно пренебречь (в запас прочности). К таким связям можно отнести, в частности, анкерные стержни, соединяющие соседние плиты в обычных (несейсмических) условиях, силы трения на опорах, вызываемые нагрузкой только на рассматриваемое перекрытие, например, в верхнем этаже. Опорные моменты, возникающие от защемления в платформенных стыках, при расчете прочности не учитывается. Свободное опирание по статической схеме эквивалентно опиранию на подвижные шарниры. Углы плит считаются закрепленными, что соответствует положению плит в реальных зданиях на всех этажах.
2.2. В плитах, свободно опертых по контуру (рис. 1), с отношением пролетов λ = l2/ l1 ≤ 3 при равномерно распределенной нагрузке q, необходимая площадь арматуры определяется по формулам:
(2.1) |
|
(2.2) |
где As1 и As2 — суммарные площади арматуры, пересекающей сечения 1-1 и II-II соответственно в коротком и длинном направлениях;
l1 и l2 — соответственно короткий и длинный расчетные пролеты; λ = l2/ l1;
q — расчетная нагрузка на единицу площади плиты;
Rs1 и Rs2 — расчетные сопротивления арматуры соответственно As1 и As2;
h01 и h02 — рабочие высоты арматуры As1 и As2;
m — коэффициент, определяемый по графикам на рис. 2;
Ksp — коэффициент, учитывающий влияние пространственной работы и концентрации арматуры в центре плит, определяемый по графикам на рис. 3.
При неравномерной нагрузке вместо q в формулы (2.1), (2.2) подставляется эквивалентная нагрузка qэ определяемая в соответствии с п.п. 2.9; 2.10 с учетом требований рационального армирования (см. п. 6.2).
Рис. 1. Расчетная схема прямоугольной плиты, свободно опертой по контуру:
1 ÷ 4 — диски; ful — прогиб точек Е и F в предельном состоянии;
———————- — линии излома
2.3. В плитах, свободно опертых по трем сторонам (рис. 4), при равномерно распределенной нагрузке а, необходимая площадь арматуры определяется по формулам:
Рис. 2. Зависимости m от λ в плитах, свободно опертых по контуру (1) и трем сторонам (2): m и m — максимальные погонные моменты;
—— — нижние допустимые пределы
при λ ≥ 0,5
(2.3) |
|
(2.4) |
Рис. 3. Зависимость коэффициента Ksp от λ и γ в плитах, свободно опертых по контуру:
а — при равномерном армировании; б — с концентрацией арматуры As1 у центра (см. рис. 15) с коэффициентом φс = 2; φс = as11/as12.
Рис. 4. Расчетные схемы плит, опертых по трем сторонам:
а — при λ ≥ 0,5; б — при λ < 0,5; 1 — 3 — диски; ful -прогибы точек Е и F в предельном состоянии; ВС — свободный край;———— линии излома
при λ ≤ 0,5
(2.5) |
|
(2.6) |
где As1 и As2 ~ суммарные площади арматуры, направленной соответственно параллельно и перпендикулярно к свободному краю;
l1 и l2 — расчетный пролет, соответственно параллельный и перпендикулярный свободному краю;
Кc — коэффициент, учитывающий эффект концентрации арматуры у свободного края:
|
(2.7) |
где φс = as11/as12. Остальные обозначения в выражениях (2.3) — (2.6) те же, что и в (2.1), (2.2).
При λ ≥ 1,5 подбор арматуры полосы плиты у края ВС (см. рис. 4, а) шириной b = l2. – 1,5 l1 производится как балочной плиты пролетом l1, остальной части плиты — по формулам (2.3), (2.4) как плиты, опертой по трем сторонам. При этом арматуру суммарной площадью As1 рекомендуется располагать согласно (рис. 15, б).
2.4. При подборе арматуры плит, опертых по контуру или трем сторонам, не требуется выполнять ограничения, накладываемые п. 1.19 СНиП на плиты, опертые по двум сторонам (балочные).
2.5. Арматуру плит, опертых по двум сторонам (балочных), подбирают согласно .
Проверка прочности свободно опертых плит
2.6. Прочность свободно опертых по контуру прямоугольных плит с отношением пролетов λ ≤ 3 при равномерно распределенной нагрузке q считается обеспеченной, если
(2.8) |
где — предельный момент усилий в арматуре, пересекающей сечение (см. рис. 1), относительно приведенного центра тяжести сжатой зоны, определенного с учетом увеличения плеч сил за счет прогиба плиты;
— предельный обобщенный момент усилий в арматуре, пересекающей сечения АЕ, BF, CF и ДЕ;
qul — расчетная несущая способность плиты;
γn — коэффициент надежности по назначению .
Моменты и находятся по формулам:
(2.9) |
|
(2.10) |
где Rs11, As11 — соответственно расчетные сопротивления и площади сечения арматуры в направлении на участке EF;
Rs12, As12 — то же, на остальной части сечения 1-1; при этом As1 = As11 + As12
Rs2, As2 — то же в сечении II-II;
Zi — плечи внутренних сил
z1 = h01 + ful – d; |
(2.11) |
z12 = h01 + 0,5 ful – d; |
(2.12) |
z2 = h02 + 0,5 ful – d; |
(2.13) |
где ful — прогиб в предельном состоянии;
d — расстояние от верха недеформированной плиты до центра тяжести сжатой зоны деформированной плиты;
ho1 и ho2 — см. п. 2.2.
При равномерном армировании в обоих направлениях в формулы (2.9), (2.10) вместо Rs11 As11 и Rs12 As12 подставляется соответственно величины
Rs11 As11 = Rs1 As1 (1 – 1/λ); Rs12 As12 = Rs1 As1/λ. |
(2.14) |
Прогиб ful в предельном состоянии определяется по формуле
|
(2.15) |
где
|
(2.16) |
В формуле (2.16): α = Es1 / Eb;
(2.17) |
|
(2.18) |
αs12 — площадь арматуры на 1 м сечения 1-1, за исключением части EF; при равномерном армировании as12 = as1;
αs2 — то же, сечения II-II.
Полученная по формуле (2.15) величина ful не должна превышать предельных значений ограничиваемых условием
где
Величины di в выражениях (2.11) — (2.13) определяются по формулам:
при λ ≤ 1,5
(2.19) |
при λ > 1,5
(2.20) |
где
x = 0,5 (3,5 — λ) A; |
(2.21) |
x1 = (λ – 1,5) A/B; x2 = 3 A/B; |
(2.22) |
A = ∑ Nsi/Rb l1; B = λ2 – 1,5 λ + 6; ∑ Nsi = Rs1·As1 + Rs2·As2. |
(2.23) |
Допускается проверять прочность свободно опертых по контуру плит по формуле
(2.24) |
где и — предельные моменты усилий в арматуре, пересекающей соответственно сечения 1-1 и II-II (см. рис. 1), рассчитываемые по формулам:
(2.25) |
(2.26) |
где x1 и x2 — высоты сжатых зон в сечениях соответственно 1-1 и II-II
Остальные обозначения те же, что в выражениях (2.1), (2.2).
2.7. Прочность плит, свободно опертых по трем сторонам (при l < 1 необходимо хотя бы шарнирное прижатие края АД или краев ВС и СД весом конструкций не менее одного этажа), при равномерно распределенной нагрузке q считается обеспеченной, если выполняются условия:
при λ ≥ 0,5
(2.29) |
при λ < 0,5
(2.30) |
где и — то же, что в выражении (2.24), определяемые по формулам (2.25), (2.26). Остальные обозначения те же, что в выражениях (2.3) — (2.6).
2.8. Прочность плит, опертых по двум сторонам (балочных), проверяется согласно .
Расчет прочности плит с неравномерными нагрузками
2.9. При наличии нескольких нагрузок различной интенсивности q1, q1,….qi на площади А1, А2, Аi, линейных нагрузок , , …. протяженностью , ,… и сосредоточенных нагрузок Q1, Q2,…Qi, (рисунки 5, 6) от сантехоборудования, навесных стен, перегородок в случаях, когда можно пренебречь асимметрией линий излома, т.е. для большинства перекрытий жилых и общественных зданий, нагрузки приводятся к эквивалентной равномерно распределенной
(2.31) |
где vi; Ai — объемы и площади фигур, образующихся под соответствующими нагрузками при вертикальном перемешивании точек Е и F на безразмерную единицу (см. рисунки 5, 6; прилож. 2);
wi — ординаты точек под грузами Qi, при том же перемещении точек Е и F (см. рисунки 5, 6; прилож. 2);
v — объем тела, образующегося под всей плитой при том же перемещении точек Е и F.
Для плит, опертых по контуру,
(2.32) |
для плит, опертых по трем сторонам,
при λ ≥ 0,5
(2.33) |
при λ < 0,5
(2.34) |
2.10. Неравномерная нагрузка от санитарно-технической кабины объемно-блочной конструкции должна передаваться в виде сосредоточенных сил в углах кабины, величины которых допускается принимать равными 1/4 веса кабины. Если кабина располагается в опертом углу плиты (см. рис. 5, т. А) и известно положение ее центра тяжести, рекомендуется передавать нагрузку от веса кабины в точках «в’ » и «d’ «, отстоящих от расчетных осей опирания плиты перекрытия на стены на расстоянии
где xс и yc — расстояния от расчетных осей опирания перекрытия на стены до мест передачи равнодействующих веса кабины на плиту, т.е. до точек «в» и «d» (должно приниматься по проекту и условиям монтажа ≈ 70 — 100 мм);
eс — расстояние от центра тяжести кабины до оси в — d (при расположении центра тяжести на оси в — d , a также между этой осью и опертым углом плиты «А» принимается eс = 0).
Интенсивность работы внешних сил, т.е. двух равнодействующих, приложенных в точках «в’ » и «d’ «, при единичных перемещениях точек Е и F составляет
(2.35) |
где Qc — расчетный вес кабины.
Величину Wc подставляют в числитель выражения (2.31), суммируя ее с другими нагрузками.
2.11. У плит, опертых по трем сторонам, при нагрузках большей интенсивности у свободного края, чем на остальной части плиты (см. рис. 6), следует при λ ≥ 1 участок шириной «вк», на котором расположены указанные нагрузки, рассчитывать как балочную плиту пролетом l1 принимая вк ≤ l2 — 0,5 l1. Остальную часть плиты рекомендуется рассчитывать по формулам (2.3) — (2.6) на нагрузки, расположенные на этой части плиты и приведенные к равномерной (см. п.п. 2.9; 2.10); также следует рассчитывать плиты при λ < 1. Полученную при расчете арматуру суммарной площадью As1 следует устанавливать согласно рис. 15, б, в.
При сосредоточенных и линейных нагрузках у свободного края концентрацию арматуры под ними следует увеличивать в соответствии с долей производимой ими работы согласно (2.31).
Рис. 5. Схема определения эквивалентной нагрузки в плитах, опертых по контуру или трем сторонам, при расположении нагрузки большей интенсивности на половине плиты, удаленной от свободного края ВС:
qi — равномерно распределенные по площади нагрузки; — линейные нагрузки; Qi — сосредоточенные нагрузки; Vi, Аi wi — объемы, площади и перемещения соответственно под нагрузками qi, , Qi
Рис. 6. Схемы определения эквивалентных нагрузок в плитах, опертых по трем сторонам, при расположении нагрузок большей интенсивности вблизи свободного края ВС или перпендикулярно ему:
а — при опирании по одной короткой и двум длинным сторонам; б — то же, по одной длинной и двум коротким сторонам
Сочетания нагрузок
3.1. Расчет по предельным состояниям второй группы (прогибы и раскрытие трещин) выполняется с учетом только длительно действующих нагрузок; при этом наличие или отсутствие трещин определяется с учетом всей нормативной нагрузки.
При платформенных стыках перекрытий со стенами междуэтажные перекрытия рассчитываются с учетом защемления их опорных концов. Отсюда принимаются следующие сочетания нормативных нагрузок:
для оценки трещинообразования
или
qs = qw; |
(3.1, a) |
qr = Pr + Pn; |
(3.2) |
для расчета прогибов и раскрытия трещин
qs — по формулам (3.1), (3.1,а);
где qw — нагрузка от собственного веса плиты;
Ps — нагрузка от панельных перегородок, санитарно-технических кабин и т.п., передаваемая до защемления перекрытий стенами;
Pr — нагрузка от мелкоштучных перегородок, санузлов «россыпью», конструкций пола и т.п., передаваемая после защемления перекрытий стенами;
Рn — полная временная нагрузка;
Pl — длительно действующая часть временной нагрузки, равная для жилых помещений 0,3 кПа, для других помещений принимается по СНиП 2.01.07-85 .
Формула (3.1, а) принимается, когда нагрузки от перегородок, сантехоборудования и т.п. передаются после защемления перекрытий в платформенных стыках.
Оценка трещинообразования чердачных перекрытий, а также свободно опертых междуэтажных перекрытий (без платформенных стыков) производится по полной нормативной нагрузке qn = qs + qr проверка прогибов и раскрытия трещин – по нагрузке ql = qs + qrl.
Проверка по образованию трещин
3.2. Перед расчетом прогибов необходимо произвести проверку перекрытия по образованию трещин. При отсутствии трещин прогибы рассчитываются по п. 3.3, а при их наличии — по п. 3.4.
Наличие или отсутствие трещин определяется из условия
где Mi, — действующий момент от нормативной нагрузки в i-ом сечении;
Мсгс,i — момент трещинообразования (внутренних сил) с i-гo сечения.
Величины действующих моментов Мi находятся по формулам строительной механики в зависимости от вида опирания и соотношения пролетов исходя из упругой работы перекрытия. Для плит, опертых по контуру и трем сторонам с защемлением на опорах, . максимальные изгибающие моменты перед образованием трещин вычисляются по формулам:
в середине пролета |
Msp = (α1·qs + α2·qr)·b·l21; |
(3.5) |
|
у опор |
Msup = Ksup·α3·qr·b·l21 |
(3.6) |
где a1, a2, a3 — коэффициенты (рисунки 7 и 8);
qs и qr- находятся по формулам (3.1) и (3.2);
b = 1 м (1 см);
Кsup =1,1 — коэффициент, учитывающий перераспределение усилий с пролета на опоры при длительном действии нагрузки.
Для плит, свободно опертых по контуру, а также по трем сторонам при λ ≥ 1 или при λ < 1, но с закрепленными углами А и Д (прижатыми или защемленными краями АД или АВ и СД) максимальные действующие пролетные моменты следует определять по формуле (3.5), принимая qr = 0 и заменяя qs полной нормативной нагрузкой qn. При незакрепленных углах величины моментов умножаются на коэффициент К0 — 1,05. В плитах, свободно опертых по трем сторонам при λ < 1 с незакрепленными углами, моменты следует определять как для балочных плит пролетом l1.
Рис. 7. Коэффициенты ai, для расчета прямоугольных плит, опертых по контуру, при свободном опирании (a) и защемлении aa
Рис. 8. Коэффициенты ai для расчета прямоугольных плит, опертых по трем сторонам при свободном опирании с (a) и защемлении aa. При λ > 2 значения ai ; принимаются как при λ = 2
Для плит, опертых по трем сторонам при λ > 1,5, участков плит, рассчитываемых по балочной схеме при λ ≤ 1,5 (см. п.п. 2.3; 2.11), а также балочных плит, кроме проверки наличия трещин в середине пролета и у опор (при образовании трещин в одном из этих сечений), требуется проверка наличия трещин в 1/3, а при необходимости и в 1/6 пролета. В этом случае действующие моменты определяются по формулам:
(3.7) |
|
(3.8) |
Величина Мcrc в выражении (3.4) определяется по формуле (125) , в которой при отсутствии напрягаемой арматуры Мrр = 0, а величина Wpl определяется по формуле (24) или по формуле (243) .
Трещиностойкость балочных плит проверяется в соответствии с общими нормативными документами с учетом защемления в платформенных стыках.
Расчет прогибов при отсутствии трещин
3.3. При отсутствии трещин по всему пролету прогиб сплошных плит, опертых по контуру или трем сторонам и защемленных на опорах в платформенных стыках, определяется по формуле
(3.9) |
где φв2 — коэффициент, учитывающий влияние длительной ползучести бетона, определяемый по табл. 34
φb1 — коэффициент, учитывающий влияние кратковременной ползучести бетона, определяемый по п. 4.24 ;
Ев — начальный модуль упругости бетона;
β1; β2 — коэффициенты (рисунки 9 и 10).
Рис. 9. Коэффициенты βi для расчета прямоугольных плит, опертых по контуру, при свободном опирании β и защемлении β
Рис. 10. Коэффициенты βiдля расчета прямоугольных плит, опертых по трем сторонам, при свободном опирании β и защемлении β λ > 2 значения βi принимаются как при λ = 2
Для плит, свободно опертых по контуру и трем сторонам при λ ≥ 1 или λ < 1 с закрепленными углами А и Д (прижатыми шарнирно или защемленными краями АД или АВ и СД) прогиб следует определять по формуле (3.9), принимая qrl = 0 и заменяя qs величиной ql. При незакрепленных углах величины прогибов следует умножать на коэффициент К0 = 1,05. При λ < 1 прогиб свободно опертых по трем сторонам плит с незакрепленными углами следует определять как балочных плит пролетом l1.
Прогиб балочных плит следует определять согласно общим
нормативным документам с учетом защемления в платформенных стыках.
Расчет прогибов при наличии трещин
3.4. Прогиб плит, опертых по контуру, а также по трем сторонам при λ ≤ 1,5 (при λ < 1 с закрепленными углами А и Д), в случае образования трещин в пролете определяется по формулам:
при qcrc > ql
(3.10) |
при qcrc ≤ qc
(3.11) |
при qcrc ≤ qs
(3.12) |
где
|
(3.13) |
φв2- см. формулу (3.9);
fсгс и qcrc — прогиб и нагрузка при образовании трещин в пролете (fscrc и qscrc) — при свободном опирании);
ful,2 и qul,2 прогиб и нагрузка в условном предельном состоянии по прочности при характеристиках материалов для предельных состояний второй группы (fsul,2 и qsul,2 при свободном опирании).
Прогиб fcrc следует вычислять по формуле (3.9), подставляя для защемленных плит вместо qrl разность qcrc – qs, а для свободно опертых плит принимая qrl = 0 и qs = qcrc и умножая величину прогиба на К0 = 1,05. В обоих случаях при определении fсгс принимается φв2 = 1.
Величина qcrc (qscrc) определяется по формулам: для свободно опертых плит
(3.14) |
для плит, защемленных на опорах
(3.15) |
Прогиб ful,2 — защемленных на опорах плит определяется по формуле
(3.16) |
где Кr — коэффициент, учитывающий влияние защемления опорного контура
(3.17) |
— кривизна в условном предельном состоянии, соответствующем расчетным сопротивлениям материалов для предельных состояний второй группы; определяется по формуле (3.23);
Кf — коэффициент, учитывающий увеличение предельного прогиба в центре прямоугольных плит, опертых по контуру, и увеличение или уменьшение прогиба у середины свободного края плит, опертых по трем сторонам, по сравнению с прогибами в точках пересечения линий излома; определяется по формулам (3.28), (3.29).
Предельная нагрузка qul,2 , входящая в выражения (3.10) — (3.18) и (3.17), находится по формуле
(3.18) |
где
(3.19) |
qul — находится из расчета прочности,
qrul — определяется по формулам: для плит, опертых по контуру,
(3.20) |
для плит, опертых по трем сторонам,
(3.21) |
|
(3.22) |
Msup — по формуле (3.6);
m — по графикам на рис. 2 (сплошные линии).
Величина кривизны 1 / rub,2 определяется по формуле
(3.23) |
где
(3.24) |
|
(3.25) |
|
α = Es1/Eb |
(3.26) |
(3.27) |
В формуле (3.27) h01 – в см; величина η принимается не более 1,2.
Коэффициент Кf. находится по формулам:
для плит, опертых по контуру,
Kf = 1 + 0,2 (λ – 1), |
(3.28) |
для плит, опертых по трем сторонам,
(3.29) |
Прогиб защемленных в платформенных стыках плит, опертых по трем сторонам при λ > 1,5, участков плит, рассчитываемых по балочной схеме при λ ≤ 1,5 (см. п.п. 2.3; 2.11), а также балочных плит с трещинами в растянутой зоне наиболее напряженных сечений следует рассчитывать с учетом переменного по длине пролета сечения по формуле
(3.30) |
где — величины кривизны в сечениях соответственно у опор, на расстоянии 1/6 и 1/3 пролета от опор и в середине пролета.
Все значения кривизны принимаются по их абсолютной величине без учета знаков и определяются по формулам от длительно действующей нормативной нагрузки. Моменты в соответствующих сечениях следует вычислять по формулам (3.5) (3.8), подставляя вместо qr. величину qrl и принимая Кsup = 1.
При свободном опирании (без защемления в платформенных стыках) в выражении (3.30) следует принимать , а при вычислении моментов в формулы (3.5) — (3.8) вместо qs, подставлять qr и qr = 0.
Проверка раскрытия трещин
3.5. Раскрытие трещин требуется проверять в случаях, когда не выполняется условие (3.4) и, следовательно, трещины образуются. В плитах перекрытий жилых и общественных зданий необходимо учитывать длительное раскрытие трещин от действия постоянных и длительных нагрузок (см. п. 3.1). Раскрытие трещин следует проверять в центре плит, опертых по контуру, и у свободного края плит, опертых по трем сторонам.
3.6. Для оценки ширины раскрытия трещин в плитах, опертых по контуру и трем сторонам, рекомендуется напряжения в арматуре наиболее напряженных сечений плиты определять от длительно действующей нагрузки по формулам:
при qcrc > ql
(3.31) |
при qcrc ≤ ql
(3.32) |
при qcrc < qs
|
(3.33) |
где
|
(3.34) |
|
(3.35) |
qi — нагрузки, используемые при проверке прогибов (см. п. 3.4);
Мcrc — момент трещинообразования, определяемый согласно п. 3.2;
ξcrc — относительная высота сжатой зоны после образования трещин
ξcrc = 0,5 (ξul,2 + 0,4); |
(3.36) |
ξul,2 — относительная высота сжатой зоны, определяемая по формуле (3.25) с учетом того, что коэффициент армирования μ для сечений АЕ … ДЕ находится по формуле (3.24), а для сечений, пересекаемых только арматурой в направлении l1 , по формуле
|
(3.37) |
asэ — эквивалентная площадь арматуры на 1 м для сечений АЕ … ДЕ
|
(3.38) |
для сечений, пересекаемых арматурой направления l1,
asэ = as1 (или as11),
h0э — приведенная рабочая высота сечения
(3.39) |
Эквивалентная величина диаметра арматуры определяется по формуле
(3.40) |
После определения всех параметров по формулам (3.36) — (3.40) и напряжения в арматуре σs по формулам (3.31) — (3.34) величина раскрытия трещин проверяется по формуле (144) или по формуле (249) .
Расчет прогибов и раскрытия трещин при неравномерных нагрузках
3.8. При наличии нескольких разнотипных нагрузок, аналогичных перечисленным в п.п. 2.9; 2.10, проверка прогибов и раскрытия трещин производится по общим формулам п.п. 3.1 — 3.7 с приведением разнотипных нагрузок к эквивалентным, равномерно распределенным или гидростатическим. При этом для плит, опертых по контуру, сосредоточенные нагрузки приводятся к равномерно распределенной по формуле
(3.36) |
где βxi, βyi — коэффициенты, определяемые по графикам на рис. 11;
Qi — сосредоточенные нагрузки.
Равномерно распределенные и линейные нагрузки местного характера сначала приводятся соответственно к четырем и двум сосредоточенным нагрузкам, а затем также к эквивалентным равномерно распределенным по формуле (3.36).
Для плит, опертых по трем сторонам, при расположении сосредоточенных, линейных и местных равномерно распределенных нагрузок преимущественно на половине, противоположной свободному краю, все нагрузки следует заменять эквивалентной равномерно распределенной по всей плите, определяемой по формуле
(3.37) |
где q1 — минимальная из равномерно распределенных нагрузок у свободного края (рис. 12);
βh; β1 — коэффициенты, определяемые по рисункам 13 и 10;
qh — максимальная интенсивность эквивалентной гидростатической нагрузки у края АД (см. рис. 12)
|
(3.38) |
где Pi, , qi — сосредоточенные, линейные и местные равномерно распределенные нагрузки;
Li, — протяженность i-й линейной нагрузки;
Ai — площадь под i -й равномерно распределенной нагрузкой.
Рис. 11. Коэффициенты приведения сосредоточенных нагрузок к равномерно распределенным, эквивалентным по прогибу, для расчета плит, опертых по контуру
Рис. 12. Схема приведения сосредоточенных и местных равномерно распределенных нагрузок к эквивалентным по прогибам гидростатической и равномерно распределенной
Рис. 13. Коэффициент βh для расчета плит, свободно опертых по трем сторонам и не опертых по четвертой стороне (ВС), при гидростатической нагрузке
3.9. У плит, опертых по трем сторонам, при нагрузках у свободного края большей интенсивности, чем на остальной части плиты (см. рис. 6), расчет производится в следующем порядке: 1) при λ > 1,5 трещиностойкость и прогибы проверяются как для плиты, опертой по двум сторонам (балочной), пролетом l1 и шириной b = l2 — 1,5 l1 , на нагрузки, расположенные на участке b и приведенные к равномерно распределенной нагрузке также по балочной схеме, с учетом (при наличии) защемления в платформенных стыках; 2) при λ ≤ 1,5 сначала определяются изгибающие моменты у свободного края от равномерно распределенной нагрузки q1, расположенной по всей площади плиты (см. п. 3.2), затем все остальные нагрузки приводятся к линейной, расположенной у свободного края
(3.39) |
С учетом этой нагрузки и коэффициентов, данных в табл. 47 определяются изгибающие моменты у свободного края плиты. Моменты от нагрузок q1 и суммируются.
По суммарному моменту оценивается трещиностойкость (см. п. 3.2). Для проверки прогиба и раскрытия трещин находятся эквивалентные равномерно распределенные нагрузки, равные
(3.40) |
где α1(2) — коэффициенты, принимаемые по графикам на рис. 8;
М1(2) — суммарные моменты у свободного края плиты на ширину b — 1 м (см); индексы 1 и 2 соответствуют схемам работы до и после защемления концов плиты в платформенных стыках. Прогиб определяется по формулам и графикам п.п. 3.3; 3.4, ширина раскрытия трещин — п. 3.5.
4.1. Расчетные сопротивления напрягаемой арматуры умножаются на коэффициент γs6 определяемый по формулам . При подборе сечений в формуле (27) принимается ξ/ξR ≈ 0,5. При наличии в одном направлении напрягаемой и ненапрягаемой арматуры при подборе сечений вместо Rsp,i и Rsi используются эквивалентные сопротивления арматуры Rsэi, определяемые по формуле
(4.1) |
где — отношение площадей напрягаемой и ненапрягаемой арматуры в i -м сечении, задаваемое с учетом требований рационального армирования.
4.2. В плитах, свободно опертых по контуру (см. п.п. 2.1, 2.2) с предварительным напряжением арматуры в обоих направлениях, необходимая площадь арматуры Aspi или Аsэi определяется по формулам (2.1) и (2.2) с заменой Rsi на Rspi или R.sэi. При этом коэффициент Ksp принимается равным 1.
4.3. Проверка прочности опертых по контуру предварительно напряженных в двух направлениях плит производится по формуле (2.8), в которой моменты и заменяются на и , определяемые по формулам (2.25), (2.26), при Ksp = 1.
4.4. В плитах, опертых по трем сторонам, с напрягаемой арматурой только в направлении l1 , параллельном свободному краю, необходимая площадь арматуры определяется по формулам (2.3) — (2.6), в которых их правая часть умножается на коэффициент К0, учитывающий отклонение диагональных линий излома от 45° и определяемый по формуле
(4.2) |
4.5. Проверка прочности опертых по трем сторонам плит с напрягаемой арматурой в одном направлении l1 производится по формулам (2.29), (2.30), в которых их правые части умножаются на коэффициент К0, определяемый по формуле (4.2). Моменты и , определяются по формулам (2.25), (2.26), в которые вместо Rs1 и Аs1 подставляются соответственно Rsэ1 и Аsэ1.
4.6. Проверка предварительно напряженных плит по образованию трещин производится по формуле (3.4) с учетом (3.5) и (3.6). При этом величина Мcrc определяется по формуле (125) или по формуле (164) .
4.7. В случае, когда трещины в плитах в стадии эксплуатации не образуются, прогибы определяются по формуле
где f — прогиб, определяемый по формуле (3.9) при γn = 1;
fb — выгиб, определяемый по формуле
(4.4) |
где — кривизна, определяемая по формуле (157) ;
— то же, по формуле (158);
Кs, и Kl — коэффициенты, равные
|
(4.5) |
В выражении (4.4) индексы 1 и 2 соответствуют сечениям, нормальным к пролетам l1 и l2. При натяжении арматуры только в одном направлении члены формулы с индексом другого направления принимаются равными нулю.
5.1. Для монтажа плит перекрытий рекомендуется предусматривать статически определимые схемы подъема. Распределение усилий от собственного веса плиты в точках подвески ее к монтажной траверсе задается конструкцией траверсы, выполняемой в виде рычажного механизма или системы вращающихся блоков. Применение статически неопределимых систем подъема (траверсы с постоянным закреплением четырех стропов на кольце) допускается только для плит шириной до 2 м, опираемых по коротким сторонам. В этом случае плита рассчитывается как подвешенная на двух петлях, расположенных по диагонали.
5.2. При проектировании системы подъема и размещения монтажных петель или отверстий следует стремиться к тому, чтобы изгибающие моменты от монтажных воздействий не превосходили моментов от полной нормативной нагрузки. Если это условие не выполняется, при расчете деформаций плиты в эксплуатационной стадии следует учитывать снижение ее жесткости в результате кратковременного действия монтажных нагрузок в тех случаях, когда они вызывают образование трещин.
Изгибающие моменты от монтажных воздействий не должны превосходить моменты трещинообразования при расчетных характеристиках бетона, соответствующих его отпускной прочности. Если это условие для каких-либо сечений не выполняется, их следует проверить по ширине раскрытия трещин, которая не должна превышать 0,2 мм.
5.3. При расчете плит на монтажные воздействия их собственный вес, определяемый с учетом производственной влажности, принимается с коэффициентом динамичности ξ = 1,4. Все расчетные характеристики бетона уменьшаются пропорционально отношению отпускной прочности к проектной. С учетом кратковременности динамических перегрузок эти характеристики следует умножать на коэффициент условий работы γb2 = 1,1.
5.4. На монтажные воздействия проверяются сечения, параллельные сторонам прямоугольных плит, проходящие через оси подъемных петель или монтажных отверстий, а также те, в которых значения поперечной силы равны нулю, а изгибающие моменты максимальны (в середине между рядами петель или отверстий — при двух рядах, на расстояниях 1/3 от краев плиты — при трех рядах петель или отверстий). Изгибающие моменты в указанных сечениях определяются по формулам строительной механики и умножаются на коэффициент неравномерности распределения напряжений по ширине сечения γ0. Величина этого коэффициента принимается: при проверке прочности, обеспечиваемой бетоном растянутой зоны, γ10 = 1,4 для сечений по осям петель или отверстий и γ0 = 1,2 для сечений, в которых поперечная сила равна нулю; при расчете необходимого армирования соответственно γ10 = 1,2 и γ0 = 1.
5.5. Плиты, поднимаемые за шесть точек с помощью балансирующей траверсы или стропов, рассчитываются в предположении неодинакового наклона стропов и неравенства вследствие этого вертикальных составляющих усилий, приложенных к монтажным петлям или отверстиям. В этом случае вертикальные составляющие усилий, приложенных к средней паре петель или отверстий, принимаются с коэффициентом 1,2, а к крайним парам — с коэффициентом 0,9 к усредненной величине всех этих составляющих.
С учетом изложенного изгибающие моменты в сечениях прямоугольных плит (рис. 14) равны:
в сечении l’- l’
(5.1) |
Рис. 14. Схема расположения петель (отверстий) при монтаже плит за шесть точек
в сечении 1-1 |
; |
(5.2) |
в сечении 2′-2′ |
(5.3) |
|
в сечении 2-2 |
(5.4) |
|
в сечении 2″-2″ |
(5.5) |
где и γ0 — коэффициенты, принимаемые согласно п. 5.4;
G0 — монтажный вес плиты, умноженный на коэффициент ξ = 1,4.
Остальные обозначения — см. рис. 14,
Найденные по формулам (5.1) — (5.5) моменты не должны превышать моментов трещинообразования соответствующих сечений, определяемых по формулам , в которых Rbt, заменена на R0bt, т.е. учтена отпускная прочность бетона, или предельных моментов внутренних сил этих сечений как железобетонных, рассчитываемых также по формулам . При определении моментов трещинообразования и предельных моментов внутренних сил должно учитываться наличие отверстий, вырезов и др.
Рис. 15. Принципиальные схемы рационального расположения арматуры в направлении l в прямоугольных плитах:
а — опертых по контуру; б, в — опертых по трем сторонам (ВС — свободный край)
5.6. При расчете на монтажные воздействия плит, поднимаемых за четыре петли небалансирующей траверсой, проверяется необходимость постановки и сечение верхней арматуры в более коротком направлении. Такая арматура не требуется, если
(5.6) |
где L, b, h — длина, ширина и толщина плиты.
При несоблюдении (5.6) верхняя поперечная арматура, распределенная по длине элемента, подбирается из условия восприятия изгибающего момента
6.1. В настоящем разделе рассматриваются особенности конструирования плит, в основном связанные с расчетом рабочей арматуры. По всем другим аспектам конструирования надлежит руководствоваться требованиями .
6.2. В плитах перекрытий, опертых по контуру и трем сторонам, с целью экономии стали следует устанавливать арматуру Аs1 в направлении l1 c концентрацией в следующих местах: при опирании по контуру — в центре (рис. 15, а), при опирании по трем сторонам — у свободного края ВС (рис. 15, б, в). При этом сечение арматуры в местах концентрации acs1 увеличивается в φc раз по сравнению с ее сечением в местах разрежения ars1.
При ширине полос концентрации, равной lc = ξcl2, площади арматуры определяются по формулам:
(6.1) |
|
ars1 = acs1/φc, |
(6.2) |
где — усредненная площадь арматуры Аs1 на 1 м сечений, нормальных к пролету l1.
Ширина полос концентрации назначается по условию оптимальной технологии изготовления арматурных сеток: а) в виде одной сетки с переменным шагом стержней в зонах концентрации и разрежения; б) в виде дополнительных узких сеток или отдельных стержней, накладываемых на основную сетку.
Если по расчету на действие нормативных нагрузок трещины в плитах не образуются, что имеет место, например, в большинстве плит, опираемых по контуру в зданиях с малым шагом несущих стен, допускается устанавливать рабочую арматуру в обоих направлениях в пролете с шагом до 400 мм, а упор — до 500 мм, в остальных случаях — согласно .
6.3. В плитах, нагруженных равномерными, линейными или сосредоточенными нагрузками различной интенсивности, рассчитываемых по п.п. 2.9 — 2.11, кроме выполнения требований п. 6.2, рекомендуется арматуру As1 концентрировать в местах приложения нагрузок большей интенсивности. Если эти нагрузки расположены вблизи коротких краев плит, опертых по контуру, или у края, противоположного свободному, плит, опертых по трем сторонам, концентрация арматуры под ними необязательна.
6.4. При подборе арматуры необходимо обеспечивать такие условия, чтобы по сечениям излома плит армирование было не меньше минимального, требуемого . Эквивалентный процент армирования определяется по формулам:
плит, опертых по контуру,
(6.3) |
плит, опертых по трем сторонам, при λ ≤ 1,5
(6.4) |
где as1 и as2 — усредненные площади арматуры Аs1 и Аs2 на 1 м сечений 1-1 и II-II (см. рис. 1 и 4);
hоэ — усредненная рабочая высота hоэ = 0,5 (hо1 + hо2).
Эквивалентный процент армирования плит, опертых по трем сторонам при λ > 1,5, и балочных плит определяется по формуле
(6.5) |
При расчете плит на действие монтажных усилий выполнения требований СНиП по минимальному армированию не требуется.
6.5. В плитах перекрытий, опертых по контуру или по трем сторонам, рекомендуется 50 % арматуры короткого направления не доводить до опор на расстояние a = 0,14 l — 20 d . где l — короткий пролет, d — диаметр арматуры. В балочных плитах эта рекомендация распространяется на рабочую арматуру.
При применении арматуры периодического профиля, заводимой за грань опоры, при выполнении требований п. 5.15 разрешается крайние (ближние к опоре) стержни перпендикулярного направления отодвигать от опор на расстояние, равное до полушага арматуры, заводимой на опору.
6.6. В плитах с отверстиями или вырезами для пропуска санитарно-технических коммуникаций пересекающая их арматура сеток обычно перерезается. Для ее компенсации следует устанавливать по контуру отверстий или вырезов укороченные стержни или плоские каркасы сечением, эквивалентным по прочности вырезанной арматуре.
Стержни должны заводиться за грань отверстия или выреза на расстояние, равное 50 диаметрам, а при расположении отверстия вблизи опоры — до края сетки над опорой. При несимметричном относительно центра плиты положении отверстия или выреза большую часть компенсирующих стержней следует располагать: у плит, опертых по контуру, ближе к центру, у плит, опертых по трем сторонам; ближе к свободному краю плиты (рис. 16).
6.7. При необходимости замены проектной арматуры арматурой другого диаметра или класса не требуется сохранять заданные проектом шаги стержней, необходимо лишь выполнять требования нормативных документов в части расстояния между стержнями (см. п. 6.4) и достаточности прочности заменяемой арматуры. При этом величина расчетного усилия в заменяющей (n) арматуре на 1 м сечения плиты должна быть не менее, чем в заменяемой (b), т.е.
(6.6) |
Рис. 16. Схема расположения компенсирующих
стержней по периметру вырезов (отверстий)
7. ПРИМЕРЫ РАСЧЕТА
ПРИМЕР 1. Определить расчетное армирование, проверить прогиб и при необходимости раскрытие трещин опертой по контуру плиты для конструктивной ячейки 3,6 × 6 м, толщиной 12 см, защемленной на опорах стенами в платформенных стыках. Нагрузки равномерно распределены по площади.
1) Исходные данные. Плита кассетного производства. Бетон тяжелый класса В15 с расчетными характеристиками (МПа): Rb = 6,5 (при γb2 = 0,9; γb3 = 0,85; Rbt,ser = 1,15; Eb = 20900. Арматура вдоль пролета l1 из стали класса А-III диаметром 6 — 8 мм, вдоль пролета l2 из проволоки класса Вр-1 диаметром 5 мм; расчетные характеристики арматуры (МПа): Rs1 = 355; Rs2 = 360; защитный слой бетона до нижнего ряда арматуры в свету 1,5 см; армирование в направлении l1 неравномерное (см. рис. 15, а) с коэффициентом концентрации φс = 2; армирование в направлении l2 равномерное. Нормативные нагрузки (кПа): от собственного веса qw = 3, нагрузка от конструкций пола, прикладываемая после защемления стенами, Pr = 0,8, временная Рn = 1,5, в том числе длительно действующая Pl = 0,3.
2) Сочетания нагрузок (кПа): расчетная q = qw 1,1 + Pr 1,2 + Pn 1,3 = 3·1,1 + 0,8·1,2 + 1,5·1,3 = 6,21; для проверки трещинообразования qs = qw = 3; qr = Pr + Pn = 0,8 + 1,5 = 2,3; для проверки прогибов и раскрытия трещин qrl = Pr + Pl = 0,8 + 0,3 = 1,1; qn = qs + qr = 3 + 2,3 = 5,3; ql = qs + qrl = 3 + 1,1 + 4,1.
3) Подбор рабочей арматуры по условию прочности. Плита рассматривается как свободно опертая с закрепленными от подъема углами. Расчетные пролеты (см): l1 = 352; l2 = 592; рабочие высоты (см): h01 = 10,1; h02 = 9,5; λ = l2/l1 = 592/352 = 1,68; γ = l1/h = 352/12 = 29,4; коэффициент m = 0,43 (см. рис. 2); коэффициент Ksp = 0,86 (см. рис. 3, б).
По формулам (2.1), (2.2):
По формулам (6.1), (6.2):
4) Проверка выполнения п. 5.16 на минимальное армирование. Эквивалентный процент армирования по формуле (6.3)
требование выполнено.
5) Проверка прогиба. Для проверки трещинообразования находим по графику на рис. 7:
a1 = 0,0865; a2 = 0,0385; a3 = 0,0785.
По формулам (3.5), (3.6):
Msp = (a1qs + a2qr)bl21 = (0,0865·3 + 0,0385·2,3) 1·3,522 = 4,33 кНм;
Msup = Ksup a3 qrbl21 = 1,1 0,0785·2,3·1·3,522 = 2,46 кНм.
По формулам (24) и (125) :
Так как Msp < Mcrc и Msup < Mcrc, трещины в пролете и у опор не образуются. В связи с этим расчет по раскрытию трещин не требуется.
Для проверки прогиба находим по графику на рис. 9:
β1 = 0,0995; β2 = 0,0275; по формуле (3.9):
Таким образом, жесткость обеспечена.
ПРИМЕР 2. Определить расчетное армирование опертой по контуру плиты для конструктивной ячейки 3,6 × 5,7 м, толщиной 16 см, защемленной на опорах в платформенных стыках. Нагрузки равномерно распределены по площади.
1. Исходные данные. Плита изготовлена в горизонтальном положении. Бетон тяжелый класса В12,5 с расчетными характеристиками (МПа): Rb = 6,75 (при γb2 = 0,9); Rbt, ser = 1; Еb = 19000. Характеристики арматуры — см. пример 1, армирование равномерное. Нормативные нагрузки (кПа): от собственного веса qw = 3; от конструкций пола Рr — 0,2; временная Pn = 1,5, в том числе Pl = 0,3.
2) Сочетание нагрузок (кПа): Расчетная q = qw·1,1 + Pr·1,2 + Pn·1,3 = 3·1,1 + 0,2·1,2 + 1,5·1,3 = 6,6.
3) Подбор арматуры по условию прочности. Расчетные пролеты (см): l1 = 851; l2 = 561; рабочие высоты (см): h01 = 14,1; h02 = 13,6; λ = l2/l1 = 561/351 = 1,6; γ = l1/h = 351/16 = 22; по рис. 2 коэффициент m = 0,48; по рис. 3, а коэффициент Ksp = 0,95. По формулам (2.1), (2.2):
4) Проверка на минимальное армирование. Эквивалентный процент армирования по формуле (6.3):
требование п. 5.16 соблюдено.
5) Проверка прогиба — производится по аналогии с примером 1.
ПРИМЕР 3. По данным примера 2 определить расчетное армирование плиты, несущей дополнительную нагрузку от санитарно-технической кабины объемно-блочной конструкции нормативным весом Qnc = 27,6 кН, расчетным весом Qc = Qnc·1,1 = 27,6·1,1 = 30,4 кН. Размеры кабины в плане а·в = 1,68·2,81 м; кабина расположена в опертом углу плиты А (см. рис. 5), координаты xc = yc = 10 см. Центр тяжести кабины находится на диагонали b – d, т.е. еc = 0. По формулам п.п. 2.9; 2.10 находим:
По формулам (2.1), (2.2):
ПРИМЕР 4. Проверить прочность, прогиб и при необходимости раскрытие трещин опертой по контуру плиты для конструктивной ячейки 3,2 × 5,7 м, толщиной 10 см, защемленной на опорах в платформенных стыках. Нагрузки равномерно распределены по площади.
1). Исходные данные. Плита кассетного производства. Бетон тяжелый класса В15, расчетные характеристики — см. пример 1. Арматура вдоль пролета l1 из стали класса А-Ш диаметром d1 = 6 мм, вдоль пролета l2 из проволоки класса Вр-1 диаметром d2 = 4 мм, расчетные характеристики (МПа): Rs1 =355, Rs2 = 365, Es1 = 2·105; защитный слой бетона до нижнего слоя арматуры 1 см; рабочие высоты: h01 = 8,6 см, h02 = 8,1 см; армирование равномерное с шагами стержней в обоих направлениях по 250 мм. Нормативные нагрузки (кПа): от собственного веса qw = 2,5; от конструкций пола, прикладываемая после защемления перекрытий стенами, Pr = 0,4; временная Pn = 15, в том числе длительная Pl = 0,3.
2) Сочетания нагрузок (кПа): расчетная q = qw·1,1 + Pr·1,2 + Pn·1,3 = 2,5·1,1 + 0,4·1,2 + 1,5·1,3 = 5,2; для проверки трещинообразования qs = qw = 2,5; qr = Pr + Pn = 0,4 + 1,5 = 1,9; для проверки прогиба и раскрытия трещин qs = 2,5; qrl = Pr + Pl = 0,4 + 0,3 = 0,7.
3) Проверка прочности. Расчетные пролеты (см): l1 = 312; l2 = 562; as1 = 4 Ø 6 = 1,13 см2; as2 = 4 Ø 4= 0,5 см2; As1 = as1·l2 = 1,13·5,62 = 6,35 см2; As2 = as2·l1 = 0,5·3,52 = 1,76 см2;
По формулам (2.15) — (2.18):
Условие ограничения ful соблюдено. По формулам (2.19) — (2.23):
x1 = (λ – 1,5) A/B=(1,8 – 1,5)·1,43/6,54 = 0,066 см;
x2 = 6A/B = 6·1,43/6,54 = 1,31 см;
По формулам (2.11) — (2.13): z1 = h01 + ful – d = 8,6 + 6,12 – 3 = 11,72 см; z12 = h01 + 0,5 ful — d = 8,6 + 0,5·6,12 — 3 = 8,66 см; z2 = h02 + 0,5 ful – d = 8,1 + 0,5·6,12 – 3 = 8,16 см; по формулам (2.8) — (2.10) с учетом (2.14):
прочность обеспечена.
4) Проверка прогиба. Для проверки трещинообразования — по графику на рис. 7: a1 = 0,092; a2 = 0,04; a3 = 0,081;
по формулам (3.5), (3.6):
Msp = (a1 qs + a2 qr) bl21 = (0,092·2,5 + 0,04·1,9)·1·3,522 = 2,97 кНм;
Msup = Ksup a3 qr bl21 = 1,1·0,081·1,9·1·3,522 = 1,64 кНм;
по формулам (24) и (125) СНиП :
Так как Msp < Mcrc и Msup < Mcrc трещины в пролете и у опор не образуются, в связи с чем проверка ширины раскрытия трещин не нужна.
Для проверки прогиба — по графику на рис. 9: β1 = 0,106; β2 = 0,028; по формуле (3.9):
жесткость обеспечена.
ПРИМЕР 5. Определить расчетное армирование, проверить прогиб и (при необходимости) раскрытие трещин опертой по трем сторонам (одной длинной и двум коротким) преднапряженной плиты перекрытия размером 5,98 × 3,28 м, толщиной 16 см, защемленной на опорах стенами в платформенных стыках. Нагрузки равномерно распределены по площади.
1) Исходные данные. Плита изготовлена в горизонтальном положении. Бетон тяжелый класса В20, расчетные характеристики (МПа): Rb = 10,2 (при φb2 = 0,9), Rbt,ser = 1,4, Eb= 24000. Напрягаемая арматура, параллельная свободному краю, из стали класса А-У диаметром 12 мм, с концентрацией у свободного края; ненапрягаемая арматура: в направлении l1 , параллельная свободному краю, из проволоки класса Вр-1 диаметром 4 мм, в направлении l2 = из стали класса A-III диаметром 6 мм расположена в нижнем ряду, защитный слой бетона до ее низа 1,5 см. Расчетные характеристики арматуры (МПа): Rsp = 680, Rs1 = 365, Rs2 = 355, Rsp,ser = 785, Esp = 19·104. Нормативные нагрузки (кПа): от собственного веса qw = 4, от перегородок Ps = 0,7, от конструкций пола Pr = 0,4, временная Рn = 1,5, в том числе длительная Pl = 0,3.
2) Сочетания нагрузок (кПа): расчетная q = qw ·1,1 + (Ps + Рr)·1,2 + Pn·1,3 = 4·1,1 + (0,7 + 0,4)·1,2 + 1,5·1,3 = 7,7; для проверки трещинообразования: qs = qw + Ps = 4 + 0,7 = 4,7; qr = Pг + Pn = 0,4 + 1,5 = 1,9; для проверки прогибов: qs = 4,7; qrl = Рr + Pl = 0,4 + 0,3 = 0,7.
3) Подбор арматуры по условию прочности. Плита рассматривается как свободно опертая с закрепленными от подъема углами. Расчетные пролеты (см): l1 = 591; l2 = 325; λ = l2/l1 = 325/591 = 0,55; рабочие высоты (см): h01 = 13,2, h02 = 14,1; по рис. 2 коэффициент m = 0,46 – 0,23; принимаем m = 0.35. По формуле (27) , задаваясь с небольшим запасом ξ/ξr = 0,5; γs6 = η – (η — 1) (2·ξ/ξr — 1) = 1,15 – (1,15 — 1) (2·0,5 — 1) = 1,15.
По формуле (4.1), задаваясь отношением напрягаемой и ненапрягаемой арматуры ns1 = 4,
По формуле (4.2): Кө = 1,5 — 0,15 λ = 1,15 — 0,15 = 0,55 = 1.07; коэффициенты Кsр = 1 и Кс = 1.
По формулам (2.3), (2.4) с учетом Kө:
принимается As1Э = Asp + As1 = 5 Ø 12 А-У + 9 Ø 4 (Bp-1) = 5,65 + 1,13 = 6,78 см2; Аs2 = 30 Ø 6 (A-III) — 8,5 см2 шаг 200 мм).
4. Проверка трещинообразования. По графикам на рис. 8: a1 = 0,068; a2 = 0,03; a3 = 0,076. По формулам (3.5), (3.6): Мsр = (a1qs + a2qr) bl21 = (0,068·4,7 + 0,03·1,9)·1·5,912 = 13,21 кНм; Msup = Ksup a3 qr bl21 = 1,1·0,76·1,91·1·5,912 = 5,7 кНм; Msp,l = (a1·qs + a2·qrl) bl21 = (0,068·4,7 + 0,03·0,7)·1·5,912 = 11,94кНм. Геометрические характеристики сечения 1-1 (b = 1 м): asp = Asp/ l2 = 5,65/3,25 = 1,74 см2/м (арматурой As1 пренебрегаем); α = Esp /Еb = 19·104/24·103 = 7,92; Агеd = bh + asp·α = 100·16 + 1,74·7,92 = 1644 см2; a1 = h – h01 = 16 — 13,2 = 2,8 см; Sred = bh2/2 + as1 α a1 = 100·162/2 + l,74·7,92·2,8 = 12839 см3; y0 = Sred/Ared = 12839/1614 = 7,96 см; еop = y0 – a1 = 7,96 — 2,8 = 5.16 см; Yred = bh3/12 + bh (h/2 – y0)2 + asp·α· е2op = 100·163/12 + 100·16 (8 — 7,96)2 + 1,74·7,92·5,162 = 34500 см4. Усилия обжатия: по формулам (1), (2) : P = 30 + 360/6 = 90 МПа; σsp = Rs,ser – P = 785 — 90 = 695 МПа. Потери напряжений по табл. 5 . Первые потери: σ1 = 0,03 σsp = 0,03·695 = 21 МПа; σ2 = 1,25·65 = 81 МПа; σ1,2 = σ1 + σ2 = 21 + 81 = 102 МПа; σsp1 = σsp — σ1,2 = 695 – 102 = 593 МПа; P1 = σsp1·asp = 593·1,74·10-1 = 103 кН; MP,1 = P1·eop = 103·5,16·10-2 = 5,31 кНм;
σb = 0; σ1-6 = σ1,2 + σ6 = 102 + 0 = 102 МПа; σsp,1 = σsp – σ1-6 = 695 – 102 = 593 МПа; Вторые потери: σb = 35 МПа; σ9 = 0 (по аналогии с σ6); σ1-9 = σ1-6 + σ8 + σ9 = 102 + 35 + 0 = 137 МПа; σsp,2 = σsp – σ1-9 = 695 — 137 = 558 МПа; Р2 = σsp,2 asp = 558·1,74·10-1 = 97 кН; Мp1,2 = P2 eop = 97·5,16·10-2 = 5,01 кНм. Моменты трещинообразования:
принимается φ = 1; Wred = Yred/y0 = 34500/7,96 = 4330 см3;
r = φ Wred/Ared = 1·4330/1614 = 2,68 см; Mrp = P2 (eop + r) = 97·(5,16 + 2,68)·10-2 = 7,61 кНм; Wpl = 1,75 Wred = 1,75·4330 = 7585 см3; Mcrc = Rbt,ser·Wpl + Mrp = 1,4·7585·10-3 + 7,61 = 18,23 кНм; M’crc = Rbt,crc·Wpl = 1,4·7585·10-3 = 10,62 кНм.
Так как Msp < Mcrc и Мsup < Мсгс, трещины ни в пролете, ни у опор не образуются, поэтому необходимость проверки раскрытия трещин отпадает.
5) Проверка прогиба. По графикам на рис. 10: β1 = 0,085; β2 = 0,025. По формуле (3.9):
По формулам (157) — (159) :
σb = σ6 + σ8 + σ9 = 0 + 35 + 0 = 35 МПа;
σ’6 = σ’q = 0; σ’6 = 35 МПа; σ’b = σ’6 + σ’8 + σ’q = 0 + 35 +0 = 35 МПа;
ε’b = σ’b/Esp = 35/19·104 = 18,4·10-5;
По формулам (4.4), (4.5): Ks = β1/0,156 = 0,085/0,156 = 0,55; Kl = β2/0,0312 = 0,025/0,0312 = 0,8;
f = (fq — fb) γn = (1,22 – 0,02)·0,95 = 1,14 см;
жесткость обеспечена.
ПРИМЕР 6. Проверить прочность, прогиб и раскрытие трещин опертой по трем сторонам (одной длинной и двум коротким) плиты перекрытия размером 5,98 × 3,28 м, толщиной 16 см, защемленной на опорах стенами в платформенных стыках. Нагрузки равномерно распределены по площади.
1) Исходные данные. Плита кассетного производства. Бетон тяжелый класса В20 с расчетными характеристиками (МПа): Rb = 8,65 (при γb2 = 0,9; γb3 = 0,85); Rb,n = 15; Rbt,ser = 1,4; Eb = 24000. Рабочая арматура в обоих направлениях из стали класса А-III: вдоль пролета l1 (параллельно свободному краю) диаметром d1 = 12 мм, расположенная в нижнем ряду; вдоль пролета l2 диаметром d2 = 6 мм; армирование в направлении l1 с концентрацией у свободного края на ширине l2/2 с коэффициентом φс = 2, в направлении l2 — равномерное; защитный слой бетона до нижнего ряда арматуры a1 = 1,5 см. Расчетные характеристики арматуры (МПа): Rs1 = 375; Rs2 = 355; Rs1,n = Rs2,n = 390; Es = 2·105.
Нормативные нагрузки и сочетания нагрузок — см. пример 5.
2) Проверка прочности. Расчетные пролеты (см): l1 = 591; l2 = 325. Принятая арматура: As1 = 14 Ø 12 А-Ш = 15,83 см2; Аs2 = 25 Ø 6 А-Ш = 7,12 см2; h01 = 13,9 см; h02 = 12,9 см; λ = l2 / l1 = 325/591 = 0,55; по формуле (2.7) Кс = 1.
По формулам (2.25) — (2.29):
3) Проверка прогиба. Для проверки трещинообразования находим по графику на рис. 8: α1 = 0,068; α2 = 0,03; α3 = 0,076; по формулам (3.5), (3.6): Msp = (α1·qs + α2·qr) bl21 = (0,068·4,7 + 0,03·1,9)·1·5,912 = 11,94 кНм; Msup = Ksup·α3·qr·b·l21 = 1,1·0,076·1,9·1·5,912 = 5,56 кНм;, по формулам (24) и (125) :
Так как Msp > Mcrc, Msup < Mcrc трещины в пролете образуются, а у опор их нет.
Для проверки прогиба по графику на рис. 10 находим: β1 = 0,085; β2 = 0,025; по формулам (3.14), (3.15):
qcrc = qscrc = 4,52 кПа; по формуле (3.9) при φb2 = 1, qs = qscrc, qrb = 0 и γn = 1;
по формулам (3.12), (3.28):
qul,2 = qsul,2 + qrul = 10,18 + 2,74 = 12,92 кПа;
Kf = 1 + 0,2 (2λ — 1) = 1 + 0,2 (2·0,55 — 1) = 1,02;
жесткость обеспечена.
4) Проверка раскрытия трещин. По формулам (3.33) — (3.39):
asэ = 0,5 (as11 + as2) = 0,5 (6,49 + 1,2) = 3,85 см2/м;
по формуле (144) при δ = η = 1;
φl = 1,6 — 15μэ·= 1,6 — 15·0,0028 = 1,56:
условие ограничения ширины раскрытия трещин выполнено.
ПРИМЕР 7. По данным примера 2 рассчитать плиту на действие монтажных нагрузок. Размеры плиты в плане (см.): L1 = 358; L2 = 568. Характеристики бетона принимаются исходя из набора 70 %-ой прочности, с коэффициентом условий работы γb2= 1,1; R0b = 1,1·0,7·7,5 = 5,78 МПа; R0bt = 1,1·0,7·0,66 = 0,51 МПа. Подъем плиты осуществляется за шесть петель (см. рис. 14) балансирующей траверсой или стропами; петли располагаются вдоль длинных краев плиты на расстоянии aк = 600 мм от них, расстояние между рядами петель a0 = L1 – 2 aк = 358 — 2·60 = 238 см; от коротких краев ближние ряды петель находятся на расстоянии bк = 600 мм, расстояние между рядами петель b0 = 0,5 L2 — bк = 0,5·568 — 60 = 224 см. Коэффициент динамичности при подъеме и монтаже ξ = 1,4, при этом G0 = ξ0·qw·L1·L2 = 1,4·4·3,58·5,68 = 114 кН; коэффициенты неравномерности усилий по сечениям плиты γ0 — по 5.4.
1) Проверка сечений 1′-1′ и 1-1, нормальных к коротким краям. Расчетная схема — однопролетная балка пролетом a0 (см. рис. 14) с двумя консолями вылетом aк, шириной L2 изгибающие моменты в расчетных сечениях:
1′-1′:
1-1:
предельный момент трещинообразования по бетону:
Так как и M1 < M0crc,1, прочность сечений 1′-1′ и 1-1 обеспечивается бетоном.
2) Проверка прочности сечений 2′-2′; 2-2, 2»-2» . нормальных к длинным краям. Расчетная схема — двухпролетная балка с пролетами b0 (см. рис. 14) и двумя консолями вылетом bк, шириной L1; изгибающие моменты в расчетных сечениях:
2 — 2: M2 = γ0·G0 (0,0444 L2 – 0,3 bк) = 1,2·114 (0,0444·5,68 – 0,3·0,6) = 9,85 кНм;
предельный момент трещинообразования
Так как , и , прочность сечений 2′-2′; 2-2, 2»-2» обеспечивается бетоном.
К п. 2.1. Свободно опертыми считаются плиты, опираемые на подвижные в плоскости опор шарниры. К такому типу плит условно с некоторым запасом можно отнести плиты, защемленные в платформенных стыках. Испытания показали, что опорные моменты, возникающие в плитах перекрытий, защемленных в платформенных стыках, сохраняются полностью или частично вплоть до исчерпания несущей способности плит и существенно ее повышают. В то же время исследования в строящихся зданиях выявили нестабильность толщин растворных швов и качества раствора, а также глубины опирания плит на стены. Это послужило основанием для того, чтобы не учитывать влияние опорных моментов при расчете плит по предельным состояниям первой группы (подробнее см. ).
К п.п. 2.2; 2.3. При расчете по деформированной схеме плит, опертых по контуру и трем сторонам, прочность зависит от большого числа параметров, и непосредственное решение задачи подбора слишком громоздко. Поэтому предложен следующий способ: вначале по формулам для проверки прочности определялись величины прочности при расчете по деформированной и по недеформированной схемам. Затем находились корреляционные зависимости между величинами прочности по обеим расчетным схемам и на их основе вводились поправочные коэффициенты в более простые формулы подбора сечений по недеформированной схеме. Для разрешения статической неопределимости плит соотношение моментов по двум направлениям принималось как для упругих плит , а плечи внутренних сил усреднялись и принимались в постоянной зависимости от h0. Для получения коэффициентов корреляции между результатами расчетов по разным схемам варьировались важнейшие параметры: λ = l2/l1; γ = l1/h; μi = asi/abi; φc = acs1/ars1 (см. рис. 3). Подробнее см. .
Коэффициент Kc рассчитываемый по формуле (2.7), получен на основании аппроксимации экспериментальных данных .
К п. 2.4. Как показывают многочисленные опыты, в плитах, опертых по контуру, даже при слабом армировании трещинообразование происходит постепенно, т.е. сначала обычно образуется трещина протяженностью 0,1-0,2 от суммарной протяженности всех линий излома, и от начала до завершения процесса трещинообразования нагрузка увеличивается на 30-40 %, а до стадии, характеризующей исчерпание несущей способности, в 1,5-2 раза. Следовательно, с образованием первых трещин исчерпания несущей способности плит не происходит (с большим запасом). В связи с этим нецелесообразно и нелогично распространять требование п. 1.19 на плиты, опертые по контуру, а также близкие по характеру работы плиты, опертые по трем сторонам.
К п.п. 3.1; 3.2. Исследованиями установлено, что при расчете плит, защемленных в платформенных стыках, по предельным состояниям второй группы с достаточной надежностью можно учитывать наличие опорных моментов, поскольку при нормативных нагрузках напряжения как в бетоне опорных сечений плит, так ив растворных швах обычно не столь значительны, что и обеспечивает правомерность таких расчетов даже при утолщенных швах и отклонениях в геометрии платформенных стыков. Расчетные формулы построены с учетом последовательности передачи нагрузок на перекрытия: до и после защемления их стенами в платформенных стыках.
Изгибающие моменты в сечениях определяются по формулам строительной механики как для упругих пластин. Податливость горизонтальных растворных швов в платформенном стыке и образование трещин в пролетных сечениях при этом не учитываются по следующим соображениям. У плит, опертых по контуру или трем сторонам, максимальные моменты в опорных сечениях и трещины в пролете возникают лишь на участках малой протяженности. Поэтому влияние возможной податливости растворных швов этих участков и локальных трещин в пролете на усилия, возникающие в плите, будет несущественным (см. также ).
К п.п. 3.2.-3.6. При проверке по образованию трещин величина Wpl железобетонных плит определяется как бетонных элементов. Это связано с тем, что при обычных процентах армирования плит в жилых зданиях влияние арматуры на Wpl пренебрежимо мало. Такое допущение идет в запас при одновременном упрощении расчета. Аналогичное допущение сделано при расчете жесткости, т.е. вместо Yn, как было в , принятое Y = bh3/12, что также упростило расчет с небольшим запасом (в 2-3 %).
Формулы (3.10) — (3.13) и (3.26) — (3.30) построены исходя из классического интерполяционного принципа с дополнениями и уточнениями, разработанными автором.
Коэффициент К0 = 1,05 при расчете свободно опертых по контуру плит с незакрепленными углами принят по следующим соображениям. Согласно расчетам, выполненным по программе «Микрон» в НИИЖБ, в интервале 1 ≤ λ ≤ 3 этот коэффициент имеет нелинейную зависимость от λ = l2/l1, линеаризируя которую, с незначительной погрешностью получим К0 = 1,06 — 0,02 (λ — 1), а для наиболее распространенных типоразмеров плит с 1,5 < λ < 2 можно с некоторым запасом принять К0 = 1,05. Для плит, опертых по трем сторонам, в интервале 0,5 ≤ λ ≤ 1,5 (по аналогии с плитами, опертыми по контуру, в интервале 1 ≤ λ ≤ 3), логично уменьшение величины К0 — 1 в два раза, поэтому принято с запасом К0 = 1,03.
К п. 4.7. Коэффициенты Ks и Kl в формуле (4.4) отражают влияние на прогибы (выгибы) опирания по четырем или трем сторонам по сравнению с балочным опиранием, которое является исходным для выражения (4.4) в целом; величины этих коэффициентов получены из сопоставления соответствующих формул теории упругости и сопротивления материалов:
Коэффициент 2 в знаменателях вторых членов формулы (4.4) введен на основании следующих соображений. Статистический анализ показал, что коэффициент Кr, вычисляемый по формуле (3.17), в среднем составляет 0,85, откуда знаменатели равны: 1 + 0,85 = 1,85, с небольшим запасом они округлены до 2.
К п. 5. При расчете плит, поднимаемых за шесть петель или отверстий, на монтажные воздействия коэффициенты неравномерности изгибающих моментов по ширине сечений γ0 и γ‘0, а также величины вертикальных составляющих усилии, приложенных к средней и крайним парам отверстий или петель (1,2 и 0,9) приняты по .
К п.п. 6.2; 6.3. Концентрация арматуры в местах возникновения наибольших изгибающих моментов позволяет полнее использовать эффект пространственной работы плит, опертых по контуру и трем сторонам, в ряде случаев повысить технологичность изготовления арматурных сеток, компенсировать неравномерность нагрузок, наличие отверстий и вырезов, например, в плитах, несущих нагрузки от сантехоборудования. Изучение работы плит с концентрацией арматуры при коэффициенте φс = 2 подтвердило эффективность и надежность их работы.
Регламентация СНиП 2.01.03-84 максимальных шагов стержней рабочей арматуры плит связана в основном с необходимостью ограничения ширины раскрытия трещин для обеспечения сохранности арматуры от коррозии. В связи с тем, что в плитах перекрытий жилых зданий, опираемых по контуру, в большинстве случаев трещины при эксплуатационных (нормативных) нагрузках не образуются, можно увеличить шаги арматуры (в пролете) до 400 мм (рекомендации НИИЖБ). В таких плитах расстояние между стержнями, доводимыми до опор, можно в принципе не ограничивать ввиду больших запасов прочности при работе их по наклонным сечениям на поперечную силу. Однако для большей надежности в плитах, опертых по контуру или трем сторонам, следует не менее двух стержней доводить до опор на 1 м, ограничив расстояние между стержнями до 500 мм. В случаях, когда при нормативных нагрузках трещины в плитах по расчету образуются, увеличенные по сравнению с расстояния между стержнями могут допускаться при условии ограничения раскрытия трещин.
Объемы V2 фигур, образующихся под местными нагрузками q2 при единичных перемещениях точек Е и F (см. рисунки 5, 6).
Продолжение приложения 2
Поверхности фигур, образующихся под местными линейными нагрузками при единичных перемещениях точек Е и F (см. рисунки 5, 6).
Продолжение приложения 2
Скорости линейных перемещений ω под сосредоточенными нагрузками Q
Плиты, опертые по контуру
Размеры ячейки в осях стен, м |
Толщина h мм |
Расчетная нагрузка q кПа |
Арматура в направлении |
|
коротком (кл. А-III) |
длинном (кл. Вр-1) |
|||
диаметр; |
шаг (мм) |
|||
3,6 × 5,7 |
6; 250* 8; 400 |
4; 200 5; 300 |
||
3,6 × 6,0 |
6; 200 8; 300 |
4; 150 5; 250 |
||
3,2 × 5,7 |
6; 250 8; 400 |
4; 250 5; 400 |
Плиты, опертые по трем сторонам (одной длинной и двум коротким)
Размеры плиты, м |
hмм |
q кПа |
Арматура в направлении |
|
длинном |
коротком |
|||
число стержней; диаметр; класс |
диаметр; шаг (мм); класс |
|||
5,98 × 3,28 |
5 Ø 12, A-V (или 5 Ø 14A-IV) + 9 Ø 5 Вр-1 |
5; 150; Вр-1 |
||
14 Ø 12, A-III (20 Ø 10, A-III) |
6; 250; A-III |
|||
8; 400; A-III |
Примечания:
1. Класс бетона плит, опертых по контуру, В 12,5-В 15, опертых по трем сторонам — В 20.
2. При расчете на эксплуатационные нагрузки по второй группе предельных состояний учтено защемление плит в платформенных стыках.
3. При расчете на монтажные воздействия учтено рациональное расположение петель (отверстий).
4. Армирование плит, опертых по контуру, равномерное, опертых по трем сторонам с концентрацией у свободной края.
* Под и над чертой даны близкие, взаимозаменяемые варианты арматуры.
1. Баулин Д.К., Зырянов B.C. Эффективный путь снижения расхода стали в перекрытиях // Жилищное строительство. — 1983. — № 1.
2. Вайнберг Д.В., Вайнберг Е.Д. Расчет пластин. Киев: Будiвельник, 1970.
3. Гвоздев А.А. Обоснование § 33 Норм проектирования железобетонных конструкций // Строительная промышленность. — 1939, № 3.
4. Гуща Ю.П. Об учете неупругих деформаций бетона и арматуры в расчете железобетонных конструкций по первой и второй группам предельных состояний // Сб. н. тр. / НИИЖБ. Совершенствование конструктивных форм, методов расчета и проектирования железобетонных конструкций. — М., 1983.
5. Зайцев Л.Н. Исследование трещинообразования, деформаций и несущей способности неразрезных железобетонных плит // Сб. ст. /НИИЖБ. Воздействие статических, динамических и многократно повторяющихся нагрузок на бетон и элементы железобетонных конструкций. — М.: Стройиздат, 1972.
6. Залесов А.С., Кодыш Э.Н., Лемыш Л.Л., Никитин И.К. Расчет железобетонных конструкций по прочности, трещиностойкости и деформациям. — М.: Стройиздат, 1988.
7. Зырянов B.C. К расчету по деформированной схеме плит, опертых по контуру. — Бетон и железобетон. — 1977. — № 4.
8. Зырянов B.C. К расчету прочности свободно опертых по контуру плит. — Бетон и железобетон. — 1980. — № 8.
9. Зырянов B.C. К расчету прочности опертых по контуру плит перекрытий панельных зданий. // Сб. н. тр. / ЦНИИЭП жилища. Конструкции крупнопанельных зданий. — М., 1980.
10. Зырянов B.C. Ограничение предельных прогибов плит, опертых по контуру // Бетон и железобетон. — 1981. — № 3.
11. Зырянов B.C. — О рациональном армировании перекрытий, опертых по трем сторонам // Жилищное строительство. -1979. — № 10.
12. Зырянов B.C. Резерв экономии стали в перекрытиях// Жилищное строительство. — 1987. — № 3.
13. Карпенко Н.И. Теория деформирования железобетона с трещинами. — М.: Стройиздат, 1976.
14. Крылов СМ. Перераспределение усилий в статически неопределимых железобетонных конструкциях. — М.: Стройиздат, 1964.
15. Пособие по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предварительного напряжения арматуры (к СНиП 2.03.01-84). — М.: Стройиздат, 1987.
16. Пособие по проектированию жилых зданий. Вып. 3. Конструкции жилых зданий (к СНиП 2.08.01-85). — М.: Стройиздат, 1989.
17. Пособие по проектированию предварительно напряженных железобетонных конструкций из тяжелых и легких бетонов (к СНиП 2.03.01-84). — М.: ЦНИИпромзданий, НИИЖБ, 1988.
18. Рекомендации по расчету плит перекрытий крупнопанельных зданий с учетом пространственной работы. — М.: ЦНИИЭП жилища, 1988.
19. Руководство по расчету статически неопределимых железобетонных конструкций. — М.: Стройиздат, 1975.
20. СНиП 2.03.01-84-84 * Бетонные и железобетонные конструкции. — М.: Стройиздат, 1989.
21. СНиП 2.01.07-85. Нагрузки и воздействия. — М.: Стройиздат, 1976.
22. Шадурекий В.Л. Таблицы для расчета упругих прямоугольных плит. — М.: Стройиздат, 1976.
23. Штритер К.Ф., Зырянов B.C. Плиты перекрытий большого пролета, опертые по трем сторонам // Жилищное строительство. — 1987. — № 11.
Как расчитать толщину монолитной плиты перекрытия
Во время строительства дома встает вопрос, какие плиты перекрытия использовать, что бы сэкономить на этом. Вне зависимости от размера и формы комнаты, над которой нужно установить плиту перекрытия, лучшими считаются монолитные железо-бетонные плиты.
В отличие от заводских прототипов, они дешевые, так как требуют минимальных затрат на закупку необходимых материалов, доставку, установку. Кроме того они имеют высокие показатели несущей способности, так как бесшовная поверхность довольно качественная. Но чтобы правильно произвести установку, необходимо выполнить расчет плиты перекрытия.
Почему же тогда во время строительства многие домовладельцы используют не монолитные прототипы, а заводские? Связанно это в первую очередь с тем, что строители ленятся работать больше необходимого и запугивают заказчика длительными подготовительными работами.
Проблема состоит не в установке опалубки, заказе арматуры или чего-то еще, а в том, что очень сложно провести расчет монолитного перекрытия.
Преимущества
Монолитные железобетонные конструкции считаются самым надежным строительным материалом. Кроме того они имеют ряд значительных преимуществ:
- Благодаря технологии установки есть возможность установить плиту над комнатой любых размеров и габаритов, только нужно понимать, что понадобятся дополнительные опоры под ними.
- Такие плиты обеспечивают высокий уровень звукоизоляции.
- Снизу конструкции, поверхность получается гладкой и бесшовной, благодаря монолитному литью, что упрощает обработку поверхности для потолка.
- С помощью цельного литья вы можете создать балкон, который прослужит долгие годы.
- Отсутствие необходимости вызова подъемного крана, но при этом заливка монолитной плиты подразумевает наличие определенных инструментов и оборудования, например бетономешалки.
Газобетонные монолитные плиты считаются легкими и подходят для сборно-монолитных перекрытий. Их выполняют в виде готовых блоков, после чего заливают бетонной смесью.
Монолитные плиты различаются по технологии устройства:
- Балочные монолитные;
- Безбалочные;
- С несъемной опалубкой;
- По профнастилу.
Безбалочные типы перекрытий являются самым распространенным видом, так как на их устройство не нужно большое количество материалов, что позволяет значительно сэкономить деньги. Безбалочная конструкция представляет собой сплошную плиту, которая опирается на колонны или капители.
Перекрытия по профнастилу чаще всего используются во время установки террас, гаражей и подобных построек. В этом случае профлист играет роль несгибаемого основания, на которое заливают бетон. В виде опоры используют каркас из металлических колонн и балок.
Очень важно составить правильный расчет и чертеж для качественного перекрытия помещения.
Расчеты
Понятное дело, что общий вес конструкции напрямую зависит от размеров, в первую очередь от толщины.
Но мало кто подозревает, что наряду с собственным весом на плиту приходится нагрузка в виде суммы массы стяжки, финишного покрытия, находящихся на ней людей и мебели. Таким образом становиться понятно, что точно рассчитать количество нагрузок на перекрытие невозможно.
Но если прибегнуть к статистическим данным, то удастся максимально точно произвести расчеты с запасом нагруза на плиту. Для примера приводим данную таблицу:
Высота перекрытия размером 5 на 5 метров | 15 сантиметров |
Допнагрузка из-за собственного веса плиты | д0.15*2500=375 килограмм на квадратный метр |
Высота стяжки из цемента | 5 сантиметров |
Толщина ламината | 0.8 сантиметров |
Общий вес мебели | 2000 килограмм |
Вес стола и предметов на нем | 200 килограмм |
Вес 10 людей | 1200 килограмм |
Распределенная нагрузка — qв | 400 килограмм на квадратный метр |
Итого общая сумма нагруза на плиту перекрытия составляет 775 килограмм на квадратный метр. Так как в данной таблице приведены составляющие имеющие характер не постоянного пребывания, то примем распределительную нагрузку (qв) как временную.
Расчет монолитной плиты перекрытия дело сложное и его лучше всего доверить специалисту.
Расчет наибольшего изгибающего момента
Самым важным параметром при выборе арматуры, точнее того какое сечение она будет иметь, является наибольший изгибающий момент. Как расчет монолитного перекрытия используем пример ниже.
Мы имеем дело с конструкцией, операющейся по своему контуру на стены, это означает, что она выступает как балка по отношению к осям абсцисс и осям аппликат и будет испытывать определенное сжатие в двух плоскостях.
Изгибающий момент по отношению к осям абсцисс балки с опорами на две стенки, который имеет пролет ln вычисляется по формуле mn = qnln2/8 (для большей удобности значение её ширины имеет 1 метр). Если пролеты равны, то равен и каждый момент.
Источник:
Бесплатные программы для вычислений и расчетов плит перекрытия
Для частных застройщиков создано большое количество полезных инструментов, один из них — программа для расчета перекрытия. Простые калькуляторы и сложные технические инструменты архитекторов помогут правильно рассчитать нагрузки и не ошибиться при постройке дома.
Интерфейс программы для расчета плит перекрытия Вернуться
Перед тем как использовать программу для расчета перекрытия, надо определиться с материалом конструкции.
При частном строительстве используют три основных типа перекрытия:
Деревянное
Несущими балками при устройстве деревянного перекрытия выступают: брус (бревно), металлический профиль (швеллер, двутавр, уголок) или железобетонные элементы. Балки застилаются досками, образуя плиты перекрытия.
Основываясь при вычислениях на строительных нормах, сечение несущей балки определяется путем суммирования её веса и нагрузки эксплуатационной. Примерная нагрузка межэтажного деревянного перекрытия 400кг/ м².
Если не предполагается активная эксплуатация данной зоны, например, в случае создания и обустройства чердака или пространства под крышей, принимаемая во внимание нагрузка может быть уменьшена.
Схема устройства плит перекрытия из дерева
В длину каждой балки из дерева закладывается минимум 24 см, необходимых для её крепления. Важный элемент расчета деревянных конструкций – прогиб балки. Правильные вычисления помогут выбрать оптимальное сечение элемента при заданной длине. Это предотвратит изменение геометрии помещения, и повысит безопасность перекрытия.
Количество необходимых балок рассчитывается, исходя из монтажного шага. Укладку производят, перекрывая узкий пролет, с интервалом от двух с половиной до четырех метров. В свою очередь, шаг зависит от ширины расположения каркасных стоек.
Железобетонные монолитные
В качестве несущих при устройстве монолитных ж/б конструкций перекрытий в доме используются металлические профили или ж/б балки. Плиты перекрытия формируются из монолитных железобетонных деталей. Это позволяет выдерживать большие нагрузки, перевязывать широкие прогоны.
Расчет монолитного перекрытия в специальной программе
При вычислении нагрузки на двутавровую балку её вес без учета стяжки рассчитывается исходя из значения 350 кг/ м², а учитывая стяжку – 500 кг/ м². Монтажный шаг при укладке принято делать равным 1 метру.
При создании ж/б перекрытия работает правило: длина проема должна быть в 20 раз больше высоты балки. Это допустимый минимум. Высота и ширина ж/б элемента так относится друг к другу, как 7 к 5. При расчете перекрытия также необходимо учитывать вероятный изгиб, геометрию плит, выбор армирования и характеристики бетона. В видео показан процесс расчета монолитного перекрытия.
Набор циркулей и карандашей для черчения
Железобетонные сборные
Элементы для изготовления подобных перекрытий имеют стандартные размеры и специальных расчетов не требуют. Необходимо определиться с их количеством и нагрузкой на общее основание строения.
Предварительный подсчет поможет значительно сэкономить при закупке строительных материалов. Кроме финансовых выгод вычисления нагрузок дадут гарантию безопасности строения.
Если прочность перекрытия не учитывать, постройка может обвалиться и привести не только к дополнительным затратам, но и к ещё более плачевным последствиям. Правильный предварительный расчет – основа безопасности строения.
Вернуться
Программы для архитекторов
Профессиональная работа по проектированию зданий и сооружений невозможна без использования технических программ для расчета перекрытия. Если строительство домов является основным занятием, стоит приложить усилия и изучить инструменты по проектированию.
Интерфейс программы ArchiCad для расчета перекрытия
Самыми распространенными техническими инженерными программами в проектных организациях являются ArchiCad, AutoCad, Лира, NormCAD и SCAD.
Плюсы инженерных программ по проектированию:
- Универсальность. Любая из программ может быть использована для построения и расчета всех видов перекрытий.
- Точность. При подсчете учитывается большое количество факторов, способных повлиять на нагрузку и прочность конструкции. Такая детальность в подсчетах позволяет получить максимально точные данные.
- Визуализация. Получив результат, строитель наглядно видит, что и как он должен смонтировать, чтобы получить гарантированный результат.
- Подготовка проектной документации. Для профессиональных застройщиков с помощью инженерных программ можно подготовить документацию, которая принимается всеми проверяющими органами.
Недостатки инженерных программ по проектированию:
- Утверждение, что подобные инструменты легко освоить — неверно. Зачастую для их использования необходимо специальное техническое образование, знание сопромата и унифицированных строительных норм.
- Объем информации: для работы с инженерными программами требуется обладать большим количеством данных, в противном случае можно получить неожиданный результат вычислений.
- Ограничение доступа: программы лицензированные, для использования необходима покупка прав на использование.
Вернуться
Калькуляторы и бесплатные программы для проектирования
Для постройки собственного дома тратить время на изучение сложных программ для расчета перекрытия излишне. Специально для тех, кто строит дом своими руками, разработаны несложные инструменты.
Чертеж плиты перекрытия созданный в специальной программе
Среди подобного софта есть платный и бесплатный, предназначенный для скачивания, и работающий on-line. Программы для расчета деревянных перекрытий. Если дом, который предстоит построить, деревянный, то для расчета перекрытия удобнее воспользоваться простым софтом.
Ultralam
Инструмент для подсчета нагрузки балок из клееного и профилированного бруса. Основное направление – многопролетные элементы.
Расчет деревянных балок Владимира Романова
Простая программа, считающая нагрузки на деревянные балки. При частном строительстве домов, инструмент помогает подобрать элемент правильно.
Программы для черчения электрических схем
Программы для расчета металлических и железобетонных перекрытий
Среди инструментов для вычисления ж/б перекрытий много предложений программного обеспечения.
Интерфейс программы Ultralam для расчета перекрытия
Часть софта необходимо купить для персонального использования. Но также в сети есть возможность скачать бесплатно программы для расчета плит перекрытия.
СИТИС: Форт
Форт — российская разработка ООО «Ситис», предназначенная для подсчета ж/б перекрытия плитами свободной геометрии.
Особенности программы:
- удобный интерфейс, простой в освоении;
- конструкция, не требуется самостоятельного построения схемы — вычисление производится автоматически, на основании запрошенных у пользователя данных;
- удобная цветовая визуализация результата;
- возможность выбирать уровень точности расчетов;
- учет характеристик бетона и возможность пополнения библиотеки материалов.
Способ основан на требованиях актуальных СНиП, сертифицирован ГОССТРОЕМ РОССИИ. Предоставляется этот софт на платной основе.
Перекрытия
Инструмент предназначен для исчисления замены нагрузок на плиты перекрытия.
С её помощью возможно вычисление общей нагрузки как на одну плиту, так и на конструкцию в целом. Для расчета монолитного перекрытия программа не рассчитана.
Позволяет:
- задавать точечные нагрузки;
- редактировать предыдущие проекты и их детали;
- работать с большими площадями перекрытий.
Версии программы периодически обновляются, добавляя ей дополнительный функционал. Скачанный софт необходимо оплатить.
Beam
Инструмент для расчета нагрузки на металлические многопролетные балки:
- определяет прочность несущей конструкции;
- позволяет подобрать верное сечение элемента;
- задает параметры максимальных и минимальных напряжений, углов поворота и прогибов.
Программа является частной разработкой, не сертифицирована. Человек, скачавший её, имеет право бесплатного ознакомления в течение 5 дней.
Интерфейс программы Beam для расчета балок перекрытия
В дальнейшем пользование полным функционалом платное.
Balka
Инструмент для вычисления нагрузки на однопролетные балки:
- определяет жесткость и прочность элементов конструкции;
- помогает с выбором сечения балок.
Является бесплатной версией Beam, поэтому имеет ряд ограничений.
Строитель + расчет железных балок
Программа от частного разработчика, позволяющая рассчитать нагрузку на ж/б ригели.
EURYDICE
Инструмент для расчета и проектирования ж/б перекрытий, предназначенный для сборно-монолитных конструкций.
Балка v2-0-2
Белорусская программа для проектирования любых видов балок перекрытия. Для использования в России подойдут расчеты по металлическим балкам. Белорусские СНиП идентичны российским. Программа лицензированная, платная.
Для домов из дерева большинство программ представляют собой on-line калькуляторы, которые можно найти в открытом доступе Интернета.
Также в сети существуют программы для перекрытий из металла и железобетона. Чтобы воспользоваться этими инструментами, следует ввести в поисковую строку фразу «программа для расчета перекрытия» или «программа для перекрытий». Останется только подобрать подходящий инструмент и воспользоваться им.
Источник:
Самостоятельный расчет плиты перекрытия: считаем нагрузку и побираем параметры будущей плиты
Монолитная плита перекрытия всегда была хороша тем, что изготавливается без применения подъемных кранов – все работы ведутся прямо на месте. Но при всех очевидных преимуществах сегодня многие отказываются от такого варианта из-за того, что без специальных навыков и онлайн-программ достаточно сложно точно определить важные параметры, как сечение арматуры и площадь нагрузки.
Поэтому в этой статье мы поможем вам изучить расчет плиты перекрытия и его нюансы, а также познакомим с основными данными и документами. Современные онлайн-калькуляторы – дело хорошее, но если речь идет о таком ответственном моменте, как перекрытие жилого дома, советуем вам перестраховаться и лично все пересчитать!
Шаг 1. Составляем схему перекрытия
Давайте начнем с того, что монолитная железобетонная плита перекрытия – это конструкция, которая лежит на четырех несущих стенах, т.е. опирается по своему контуру.
И не всегда плита перекрытия представляет собой правильный четырехугольник. Тем более, что сегодня проекты жилых домов отличаются вычурностью и многообразием сложных форм.
В этой статье мы научим вас рассчитывать 1 метр плиты, а общую нагрузку вам нужно будет вычислять по математическим формулам площадей. Если совсем сложно – разбейте площадь плиты на отдельные геометрические фигуры, рассчитайте нагрузку каждой, затем просто суммируйте.
Шаг 2. Проектируем геометрию плиты
Теперь рассмотрим такие основные понятия, как физическая и проектная длина плиты. Т.е. физическая длина перекрытия может быть любой, а вот расчетная длина балки уже имеет другое значение. Ею называют минимальное расстояние между наиболее удаленными соседними стенами. По факту физическая длина плиты всегда длиннее, чем проектная длина.
Важный момент: несущий элемент плиты может быть как шарнирная бесконсольная балка, так и балка жесткого защемления на опорах. Мы будем приводить пример рассчета плиты на безконсольную балку, т.к. такая встречается чаще.
Чтобы рассчитать всю плиту перекрытия, нужно рассчитать ее один метр для начала. Профессиональные строители используют для этого специальную формулу, и приведет пример такого расчета. Так, высота плиты всегда значится как h, а ширина как b. Давайте рассчитаем плиту с такими параметрами: h=10 см, b=100 см. Для этом вам нужно будет познакомиться с такими формулами:
Дальше – по предложенным шагам.
Шаг 3. Рассчитываем нагрузку
Плиту перекрытия легче всего рассчитать, если она имеет квадратную форму и если вы знаете, какая нагрузка будет запланирована. При этом какая-то часть нагрузки будет считаться длительной, которую определяет количество мебели, техники и этажности, а другая – кратковременной, как строительное оборудование во время стройки.
Кроме того, плита перекрытия должна выдерживать и другого рода нагрузки, как статистические и динамические, при этом сосредоточенная нагрузка всегда измеряется в килограммах или в ньютонах (например, нужно будет ставить тяжелую мебель) и распределительная нагрузка, измеряемая в килограммах и силе. Конкретно сам расчет плиты перекрытия всегда нацелен на определение распределительный нагрузки.
Вот ценные рекомендации, какой должна быть нагрузка на плиту перекрытия в плане расчета на изгиб:
Второй немаловажный момент, который тоже нужно учитывать: на какие стены будет опираться монолитная плита перекрытия? На кирпичные, каменные, бетонные, пенобетонные, газобетонные или из шлакоблока? Вот почему так важно рассчитать плиту не только с позиции нагрузки на нее, но и с точки зрения ее собственного веса. Особенно, если ее устанавливают на недостаточно прочные материалы, как шлакоблок, газобетон, пенобетон или керамзитобетон.
Сам расчет плиты перекрытия, если мы говорим о жилом доме, всегда нацелен на нахождение распределительной нагрузки. Она рассчитывается по формуле: q1=400 кг/м². Но к этому значению добавьте вес самой плиты перекрытия, а это обычно 250 кг/м², а бетонная стяжка и черной и чистовой пол даст еще дополнительные 100 кг/м². Итого имеем 750 кг/м².
Учитывайте при этом, что изгибающее напряжение плиты, которая по своему контуру опирается на стены, всегда приходится на ее центр. Для пролета в 4 метра напряжение рассчитывается так:
l=4 м Мmax=(900х4²)/8=1800 кг/м
Итого: 1800 кг на 1 метр, именно такая нагрузка должна будет на плиту перекрытия.
Шаг 4. Подбираем класс бетона
Именно монолитную плиту перекрытия, в отличие от деревянных или металлических балок, рассчитывают по поперечному сечению. Ведь бетон само по себе – неоднородный материал, и его предел прочности, текучести и других механических характеристик имеет значительный разброс.
Что удивительно, даже при изготовлении образцов из бетона, даже из одного замеса получаются разные результаты. Ведь здесь много зависит от таких факторов, как загрязненность и плотности замеса, способов уплотнения других различных технологических факторов, даже так называемой активности цемента.
При расчете монолитной плиты перекрытия всегда учитывается и класс бетона, и класс арматуры. Само сопротивление бетона принимается всегда на значение, на какое идет сопротивление арматуры. Т.е., по сути, на растяжение работает именно арматура. Сразу оговоримся, что здесь существует несколько расчетных схем, которые учитывают разные факторы. Например, силы, которые определяют основные параметры поперечного сечения по формулам, или расчет относительно центра тяжести сечения.
Шаг 5. Подбираем сечение арматуры
Разрушение в плитах перекрытия происходит тогда, когда арматура достигает своего предела прочности при растяжении или текучести. Т.е. почти все зависит от нее. Второй момент, если прочность бетона уменьшается в 2 раза, тогда и несущая способность армирования плиты уменьшается с 90 на 82%. Поэтому доверимся формулам:
Происходит армирование при помощи обвязки арматуры из сварной сетки. Ваша главная задача – рассчитать процент армирования поперечного профиля продольными стержнями арматуры.
Как вы наверняка не раз замечали, самые распространенные ее виды сечения – это геометрические фигуры: форма круга, прямоугольника, трапеции. А расчет самой площади сечения происходит по двум противоположным углам, т.е. по диагонали. Кроме того, учитывайте, что определенную прочность плите перекрытия придает также дополнительное армирование:
Если рассчитывать арматуру по контуру, тогда вы должны выбрать определенную площадь и просчитывать ее последовательно. Далее, на самом объекте проще рассчитывать сечение, если взять ограниченной замкнутой объект, как прямоугольник, круг или эллипс и производить расчет в два этапа: с использованием формирования внешнего и внутреннего контура.
Например, если вы рассчитываете армирование прямоугольного монолитного перекрытия в форме прямоугольника, тогда нужно отметить первую точку в вершине одного из углов, затем отметить вторую и произвести расчет всей площади.
Согласно СНиПам 2.03.01-84 «Бетонные и железобетонные конструкции» сопротивление растягивающим усилиям в отношении арматуры А400 составляет Rs=3600 кгс/см², или 355 МПа, а вот для бетона класса B20 значение Rb=117кгс/см² или 11.5 МПа:
Согласно нашим вычислениям, для армирования 1 погонного метра понадобится 5 стержней с сечением 14 мм и с ячейкой 200 мм. Тогда площадь сечения арматуры будет равняться 7.69 см². Чтобы обеспечить надежность по поводу прогиба, высоту плиты завышают до 130-140 мм, тогда сечение арматуры составляет 4-5 стержней по 16 мм.
Источник:
Расчет монолитной плиты перекрытия
Невзирая на высокий ассортимент готовых плит, железобетонные монолитные плиты не утратили своей актуальности, продолжая пользоваться спросом. Особенно актуальным их применение является при строительстве малоэтажной загородной недвижимости, которой характерна индивидуальная планировка с различным размером комнат или в тех случаях, когда для строительства не используются подъемные краны.
Такой вариант возведения зданий позволит сэкономить средства на доставке материалов и сократить затраты на монтаж. При этом возрастет время на осуществление подготовительных работ, которые будут связаны с возведением опалубки. Впрочем, этот факт не отпугивает застройщиков, которые не видят трудности в покупке бетона и арматуры.
Гораздо сложнее произвести правильный расчет плит перекрытий, определить марку необходимого бетона, вид арматуры, значение действующей нагрузки и прочие связанные с прочностью и надежностью характеристики.
Принцип расчета
Монолитная плита перекрытия представляет собой один из компонентов каркаса здания, который воспринимает на себя вертикальные нагрузки, вступая одновременно в качестве элемента жесткости всей конструкции.
Расчет параметров железобетонных конструкций осуществляется в соответствии с регламентом строительных норм и правил СП 52-101-2003 и СНиП 52-01-2003.
Процесс ручного расчета конструкций представляет собой ряд этапов, в ходе которых производится подбор таких параметров, как класс бетона и арматуры, поперечного сечения, достаточного для того чтобы избежать разрушения при воздействии максимальных сил нагрузки. В случае использования ПЭВМ находят применение специализированные программные комплексы.
Как показывает практика применения железобетонных плит перекрытия, для упрощения задачи можно пренебречь сложными вычислениями таких величин, как расчет на раскрытие трещин и деформацию, сил кручения и поперечных сил, а также продавливания и местного сжатия. При обычном строительстве в этом нет необходимости, сосредоточив свое внимание на вычислении изгибающего момента, действующего на поперечное сечение.
Характеристики монолитной плиты
Реальная длина плиты может отличаться от расчетного значения пролета, которым принято считать расстояние между стенами, выступающими в виде опор. Стены выполняют функцию поддержки плиты. Таким образом, пролет – это размер помещения в длину и в ширину. Для его измерения можно использовать простую рулетку, с помощью которой можно измерить расстояние между стенами. При этом реальное значение длины монолитной плиты должно быть обязательно больше.
В качестве опор для плиты выступают стены, материалом для которых может послужить распространенный кирпич или шлакоблок, камень, керамзитобетон, газо- или пенобетон. Необходимо учитывать прочность стен, которые должны выдерживать массу плиты. В случае с камнем, шлакоблоком и кирпичом можно не сомневаться в несущей способности, тогда как пенобетонные конструкции должны быть рассчитаны на определенную массу.
Для примера произведем расчет однопролетной схемы перекрытия с опорой на две стены, расстояние между которыми составляет 5000 мм.
Геометрические размеры толщины и ширины плиты задаются. Как правило, наиболее часто в загородном строительстве применяют плиты толщиной 0,1 м с условной шириной равной одному метру. Принимаем за основу конструкцию с армированием плиты перекрытия при помощи арматуры марки А400 при заливке бетона В20. В дальнейшем плита при расчете рассматривается как балка.
Выбор типа опоры
Во время расчета плита перекрытия может по-разному опираться на несущие стены, в зависимости от типа использованного при их возведении материала. Различают следующие варианты опоры:
- жестко защемленная на опорах балка;
- балка консольного типа шарнирно-опертая;
- бесконсольная шарнирно-опертая балка.
Вид опоры определяет принцип расчета. Рассмотрим пример расчета для наиболее распространенного вида конструкции плиты перекрытия с шарнирно-опертой балкой бесконсольного типа.
Определение нагрузки
В процессе строительства, а впоследствии при эксплуатации на балку воздействую различные виды нагрузок.
При расчете нас интересуют, прежде всего, динамические и статистические нагрузки, возникающие вследствие передвижения или давления сил временного характера, вызванного перемещением людей, транспорта, работы механизмов и постоянные составляющие, обусловленные массой строительных элементов. При проведении расчета, для получения необходимого запаса прочности, можно пренебречь разницей между данными видами нагрузок.
По характеру нагрузки дифференцируются на:
- распределенные хаотически и неравномерно;
- точечные;
- равнораспределенные.
При расчете плиты перекрытия достаточно ориентироваться на равномерные нагрузки. Для сосредоточенной нагрузки усилия измеряются в ньютонах, килограммах (кг), либо килограммсилах (кгс).
В случае с равным распределением актуально апеллировать данными о нагрузке, воздействующей на метр. Для жилых домов параметр равнораспределенной нагрузки составляет в среднем 400 Н/м2. При толщине плиты в 10 см ее масса создаст нагрузку около 250 кг/м2, а с учетом стяжки или использовании керамической плитки она может возрасти до 350 кг/м2. Таким образом, нагрузка рассчитывается с коэффициентом запаса в 20%, составляя:
Q = (400+250+100)*1.2 = 900 Н/м
Данная величина нагрузочной способности обеспечит прочность при различных вариациях статических и динамических нагрузок.
При наличии лестниц или бетонных маршей опирающихся на плиту перекрытия, необходимо брать в расчет их массу и не упускать из виду динамическую нагрузку во время эксплуатации.
Проектировка загородных домов должна предусматривать инсталляцию крупных объектов на плите, например, каминов, масса которых может варьироваться от 1 до 3 тонн. Для обеспечения прочности в таких случаях используется местное усиление – армирование или предусматривается отдельная балка.
Расчет изгибающего момента
Для бесконсольного типа балки при наличии равномерно распределенной нагрузки, которая сосредоточена на опорах шарнирного вида показатель максимально изгибающего момента определяется по формуле:
Мmax = (Q * L²) / 8, где
L – длина балки.
При расчете имеем:
Мmax = (900*5²) / 8 = 225 кг/м.
Основания для расчета
Для бетонных плит перекрытий сопротивление материала растяжению практически равно нулю. Такой вывод можно сделать на основании анализа и сопоставления нагрузок на растяжение, которые испытывает арматура и бетон.
Разница между этими данными составляет три порядка, что свидетельствует о том, что всю нагрузку берет на себя арматурный каркас. С нагрузками на сжатие ситуация обстоит иначе: силы равномерно распределяются вдоль вектора силы.
Как следствие, сопротивление на сжатие принимаем равным расчетному значению.
Для выбора арматуры необходимо определить значение по формуле:
ER = 0,8/ 1+RS/700 , где
RS – расчетное значение сопротивления арматуры, МПа.
Имея значение данные о расстоянии между нижней частью балки и центром окружности, сформированной плоскостью поперечного сечения арматуры, ее марку выбирают исходя из таблицы.
Правильный подбор арматуры обеспечит надежное сцепление с бетоном, которое гарантирует предел прочности без деформаций и растрескиваний. При этом максимальное растягивающее усилие арматуры не должно превышать полученное расчетным путем значение.
При армировании на один погонный метр, как правило, уходит не менее чем пять стержней, которые располагаются равномерно на одинаковых расстояниях. Точное число стержней зависит от нагрузки и определяется по СНиП 52-01-2003.
Формируется каркас чаще всего из нескольких слоев стержней, которые могут иметь различное сечение. Сетка скрепляется заранее хомутами или фиксируется при помощи сварки.
В качестве элементов армирования чаще всего применяется ненапрягаемая арматура Ат-IIIС и Ат-IVС с наличием термического упрочнения.
Таким образом, расчет железобетонной конструкции плиты перекрытия включает в себя следующие стадии:
- составление схемной реализации перекрытия с компоновкой элементов. При возведении многоэтажек расстояния между колоннами должны быть кратные 3000 мм в диапазоне величин от 6 до 12 метров. Значение высоты одного этажа может находиться в пределах от 3,6 до 7,2 метра с дискретностью 600 мм. Данные условия помогут упростить вычисление и обеспечить стандартный автоматический расчет;
- прочностный конструкционный расчет монолитной плиты. К расчетной части должна прилагаться графическая часть в виде составленного подробного чертежа, который можно составить самостоятельно или доверить его реализацию специалистам из проектных организаций. При этом необходимо произвести расчет элементов перекрытия и главной балки. Выбор бетона при проектировании осуществляется по классу материала на сжатие по заданной прочности, исходя из норм и табличных значений. Как правило, балка и монолит проектируются из одной марки бетона;
- в зависимости от архитектурных особенностей строения может понадобиться расчет колонны, а также ригеля или второстепенной балки;
- на основании всех произведенных расчетов, полученных масс и нагрузок формируется фундамент. Монолитное основание представляет собой подземную конструкцию, с помощью которого нагрузка от здания передается на грунт. Общий чертеж должен отображать конструкцию здания в целом с учетом изображения положения плит перекрытий, несущих стен и основания.
Расчетная часть строительного проекта для любого здания является необходимой документаций, которая содержит информацию о размерах архитектурного объекта, его особенностях, технологии возведении.
При этом именно на основе проекта составляется строительная расходная ведомость, в которую включаются необходимые для возведения здания материалы, определяются трудозатраты. А основе расчета осуществляется планирование материалов, этапов выполнения строительных работ, их объемов и сроков.
Прочность и надежность здания во многом зависят от правильности расчетов, качества используемых материалов и соблюдения технологии строительства на каждом из отдельно взятых этапов.
Преимущества применения плит перекрытий
Технология возведения перекрытий в виде армированных бетонных плит обладает целым рядом преимуществ, среди которых:
- возможность сооружения перекрытий для зданий и сооружений с практически любыми габаритами, независимо от линейных размеров. Единственным нюансом являются конструктивные особенности зданий. При слишком большой площади покрытия для устойчивости перекрытий, отсутствия провисаний устанавливаются дополнительные опоры. Для домов и сооружений, стены которых выполнены на основе газобетона для установки плиты железобетонного перекрытия осуществляют монтаж дополнительных опор, изготовленных из стали или бетона;
- отсутствие необходимости масштабных отделочных работ на внутренней части поверхности, которая, как правило, благодаря технологии монолитного литья имеет гладкую и ровную форму;
- высокая степень звукоизолирующих свойств. Принято считать, что плита перекрытия толщиной 140 мм обладает высокой степенью шумоподавления, обеспечивающего комфортность проживания в доме для человека;
- конструктивно данная технология обладает гибкими инструментами для строительства различных архитектурных форм и объектов. Так, например, загородный дом можно с легкостью оборудовать балконом на втором этаже, который будет иметь необходимые размеры и конфигурацию;
- высокий уровень прочности и долговечности строительной конструкции перекрытии в целом, который обусловлен набором прочностных характеристик армированного бетона.
Источник:
Расчет консольной плиты перекрытия
Монолитная плита перекрытия всегда была хороша тем, что изготавливается без применения подъемных кранов – все работы ведутся прямо на месте.
Но при всех очевидных преимуществах сегодня многие отказываются от такого варианта из-за того, что без специальных навыков и онлайн-программ достаточно сложно точно определить важные параметры, как сечение арматуры и площадь нагрузки.
Поэтому в этой статье мы поможем вам изучить расчет плиты перекрытия и его нюансы, а также познакомим с основными данными и документами.
Современные онлайн-калькуляторы – дело хорошее, но если речь идет о таком ответственном моменте, как перекрытие жилого дома, советуем вам перестраховаться и лично все пересчитать!
Шаг 2. Проектируем геометрию плиты
Теперь рассмотрим такие основные понятия, как физическая и проектная длина плиты. Т.е.
физическая длина перекрытия может быть любой, а вот расчетная длина балки уже имеет другое значение.
Ею называют минимальное расстояние между наиболее удаленными соседними стенами. По факту физическая длина плиты всегда длиннее, чем проектная длина.
Вот хороший видео-урок о том, как производится расчет монолитной плиты перекрытия:
Важный момент: несущий элемент плиты может быть как шарнирная бесконсольная балка, так и балка жесткого защемления на опорах. Мы будем приводить пример рассчета плиты на безконсольную балку, т.к. такая встречается чаще.
Чтобы рассчитать всю плиту перекрытия, нужно рассчитать ее один метр для начала. Профессиональные строители используют для этого специальную формулу, и приведет пример такого расчета.
Так, высота плиты всегда значится как h, а ширина как b. Давайте рассчитаем плиту с такими параметрами: h=10 см, b=100 см.
Для этом вам нужно будет познакомиться с такими формулами:
Дальше – по предложенным шагам.
Шаг 3. Рассчитываем нагрузку
Плиту перекрытия легче всего рассчитать, если она имеет квадратную форму и если вы знаете, какая нагрузка будет запланирована.
При этом какая-то часть нагрузки будет считаться длительной, которую определяет количество мебели, техники и этажности, а другая – кратковременной, как строительное оборудование во время стройки.
Кроме того, плита перекрытия должна выдерживать и другого рода нагрузки, как статистические и динамические, при этом сосредоточенная нагрузка всегда измеряется в килограммах или в ньютонах (например, нужно будет ставить тяжелую мебель) и распределительная нагрузка, измеряемая в килограммах и силе. Конкретно сам расчет плиты перекрытия всегда нацелен на определение распределительный нагрузки.
Вот ценные рекомендации, какой должна быть нагрузка на плиту перекрытия в плане расчета на изгиб:
Второй немаловажный момент, который тоже нужно учитывать: на какие стены будет опираться монолитная плита перекрытия? На кирпичные, каменные, бетонные, пенобетонные, газобетонные или из шлакоблока? Вот почему так важно рассчитать плиту не только с позиции нагрузки на нее, но и с точки зрения ее собственного веса. Особенно, если ее устанавливают на недостаточно прочные материалы, как шлакоблок, газобетон, пенобетон или керамзитобетон.
Сам расчет плиты перекрытия, если мы говорим о жилом доме, всегда нацелен на нахождение распределительной нагрузки. Она рассчитывается по формуле: q1=400 кг/м².
Но к этому значению добавьте вес самой плиты перекрытия, а это обычно 250 кг/м², а бетонная стяжка и черной и чистовой пол даст еще дополнительные 100 кг/м².
Итого имеем 750 кг/м².
Учитывайте при этом, что изгибающее напряжение плиты, которая по своему контуру опирается на стены, всегда приходится на ее центр. Для пролета в 4 метра напряжение рассчитывается так:
l=4 м Мmax=(900х4²)/8=1800 кг/м
Итого: 1800 кг на 1 метр, именно такая нагрузка должна будет на плиту перекрытия.
Шаг 4. Подбираем класс бетона
Именно монолитную плиту перекрытия, в отличие от деревянных или металлических балок, рассчитывают по поперечному сечению.
Ведь бетон само по себе – неоднородный материал, и его предел прочности, текучести и других механических характеристик имеет значительный разброс.
Что удивительно, даже при изготовлении образцов из бетона, даже из одного замеса получаются разные результаты.
При расчете монолитной плиты перекрытия всегда учитывается и класс бетона, и класс арматуры.
Само сопротивление бетона принимается всегда на значение, на какое идет сопротивление арматуры. Т.е., по сути, на растяжение работает именно арматура.
Сразу оговоримся, что здесь существует несколько расчетных схем, которые учитывают разные факторы.
Например, силы, которые определяют основные параметры поперечного сечения по формулам, или расчет относительно центра тяжести сечения.
Расчет монолитной плиты перекрытия на примере квадратной и прямоугольной плит, опертых по контуру
При создании домов с индивидуальной планировкой дома, как правило, застройщики сталкиваются с большим неудобством использования заводских панелей. С одной стороны, их стандартные размеры и форма, с другой – внушительный вес, из-за которого не обойтись без привлечения подъемной строительной техники.
Для перекрытия домов с комнатами разного размера и конфигурации, включая овал и полукруг, идеальным решением являются монолитные ж/б плиты. Дело в том, что по сравнению с заводскими они требуют значительно меньших денежных вложений как на покупку необходимых материалов, так и на доставку и монтаж. К тому же у них значительно выше несущая способность, а бесшовная поверхность плит очень качественная.
Почему же при всех очевидных преимуществах не каждый прибегает к бетонированию перекрытия? Вряд ли людей отпугивают более длительные подготовительные работы, тем более что ни заказ арматуры, ни устройство опалубки сегодня не представляет никакой сложности. Проблема в другом – не каждый знает, как правильно выполнить расчет монолитной плиты перекрытия.
Преимущества устройства монолитного перекрытия
Монолитные железобетонные перекрытия причисляют к категории самых надежных и универсальных стройматериалов.
- по данной технологии возможно перекрывать помещения практически любых габаритов, независимо от линейных размеров сооружения. Единственное при необходимости перекрыть больших пространств возникает необходимость в установке дополнительных опор;
- они обеспечивают высокую звукоизоляцию. Несмотря на относительно небольшую толщину (140 мм), они способны полностью подавлять сторонние шумы;
- с нижней стороны поверхность монолитного литья – гладкая, бесшовная, без перепадов, поэтому чаще всего подобные потолки отделывают только при помощи тонкого слоя шпаклевки и окрашивают;
- цельное литье позволяет возводить выносные конструкции, к примеру, создать балкон, который составит одну монолитную плиту с перекрытием. Кстати, подобный балкон значительно долговечнее.
- К недостаткам монолитного литья можно отнести необходимость использования при заливке бетона специализированного оборудования, к примеру, бетономешалок.
Внимание!
Устраивать монолитное перекрытие в доме из газобетона можно исключительно после установки дополнительных опор из бетона или железа. Что же касается деревянных построек, то использование такого типа литья запрещено.
Для конструкций из легкого материала типа газобетона больше подходят сборно-монолитные перекрытия. Их выполняют из готовых блоков, к примеру, из керамзита, газобетона или других аналогичных материалов, после чего заливают бетоном. Получается, с одной стороны, легкая конструкция, а с другой – она служит монолитным армированным поясом для всего строения.
Виды
По технологии устройства различают:
- монолитное балочное перекрытие;
- безбалочное – это один из самых распространенных вариантов, расходы на материалы здесь меньше, поскольку нет необходимости закупать балки и обрабатывать перекрытия.
- имеющие несъемную опалубку;
- по профнастилу. Наиболее часто такую конструкцию используют для создания терасс, при строительстве гаражей и других подобных сооружений. Профлисты играют роль несгибаемой опалубки, на которую заливают бетон. Функции опоры будет выполнять каркас из металла, собранный из колонн и балок.
Обязательные условия получения качественного и надежного монолитное перекрытие по профнастилу:
- чертежи, в которых указаны точнейшие размеры сооружения. Допустимая погрешность – до миллиметра;
- расчет монолитной плиты перекрытия, где учтены создаваемые ею нагрузки.
Профилированные листы позволяют получить ребристое монолитное перекрытие, отличающееся большей надежностью. При этом значительно сокращаются затраты на бетон и стержни арматуры.
На заметку
Все монтажные работы выполняются по специально составленным технологическим картам на устройство монолитного перекрытия. Его еще называют основным технологическим документом, предназначенным как для строительных организаций и проектных бюро, так и для мастеров , непосредственно связанных с выполнением монолитных ж/б работ.
Расчет безбалочного перекрытия
Перекрытие этого типа представляет из себя сплошную плиту. Опорой для нее служат колонны, которые могут иметь капители. Последние необходимы тогда, когда для создания требуемой жесткости прибегают к уменьшению расчетного пролета.
Полезно
Экспериментально было установлено, что для безбалочной плиты опасными нагрузками можно считать сплошную, оказывающую давление на всю площадь и полосовую, распределенную через весь пролет.
Параметры монолитной плиты
Понятно, что вес литой плиты напрямую зависит от ее высоты.
Однако, помимо собственно веса она испытывает также определенную расчетную нагрузку, которая образуется в результате воздействия веса выравнивающей стяжки, финишного покрытия, мебели, находящихся в помещении людей и другое.
Было бы наивно предположить, что кому-то удастся полностью предугадать возможные нагрузки или их комбинации, поэтому в расчетах прибегают к статистическим данным, основываясь на теории вероятностей. Таким путем получают величину распределенной нагрузки.
К примеру:
Здесь суммарная нагрузка составляет 775 кг на кв. м.
Одни из составляющих могут носить кратковременный характер, другие – более длительный. Чтобы не усложнять наши расчеты, условимся принимать распределительную нагрузку qв временной.
Как рассчитать наибольший изгибающий момент
Это один из определяющих параметров при выборе сечения арматуры.
Напомним, что мы имеем дело с плитой, которая оперта по контуру, то есть, она будет выступать в роли балки не только относительно оси абсцисс, но и оси аппликат (z), и будет испытывать сжатие и растяжение в обеих плоскостях.
Как известно, изгибающий момент по отношению к оси абсцисс балки с опорой на две стены, имеющей пролет ln вычисляют по формуле mn = qnln2/8 (для удобства за ее ширину принят 1 м). Очевидно, что если пролеты равны, то равны и моменты.
Если учесть, что в случае квадратной плиты нагрузки q1 и q2 равны, возможно допустить, что они составляют половину расчетной нагрузки, обозначаемой q. Т. е.
Иначе говоря, можно допустить, что арматура, уложенная параллельно осям абсцисс и аппликат, рассчитывается на один и тот же изгибающий момент, который вдвое меньше, нежели тот же показатель для плиты, которая в качестве опоры имеет две стены. Получаем, что максимальное значение расчетного момента составляет:
Что же касается величины момента для бетона, то если учесть, что он испытывает сжимающее воздействие одновременно в перпендикулярных друг другу плоскостях, то ее значение будет больше, а именно,
Как известно, для расчетов требуется единая величина момента, поэтому в качестве его расчетного значения берут среднее арифметическое от Ма и Мб, которое в нашем случае равно 1472.6 кгс·м:
Как выбрать сечение арматуры
В качестве примера произведем расчет сечения стержня по старой методике и сразу отметим, что конечный результат расчета по любой другой дает минимальную погрешность.
Какой бы способ расчеты вы ни выбрали, не надо забывать, высота арматуры в зависимости от ее расположения относительно осей x и z будет различаться.
В качестве значения высот предварительно примем: для первой оси h01 = 130 мм, для второй – h02 = 110 мм. Воспользуемся формулой А0n = M/bh20nRb. Соответственно получим:
Из представленной ниже вспомогательной таблицы найдем соответствующие значения η и ξ и посчитаем искомую площадь по формуле Fan= M/ηh0nRs.
Получаем
- Fa1 = 3,275 кв. см.
- Fa2 = 3,6 кв. см.
Фактически, для армирования 1 пог. м необходимо по 5 арматурных стержня для укладки в продольном и поперечном направлении с шагом 20 см.
Для выбора сечения можно воспользоваться нижележащей таблицей. К примеру, для пяти стержней ⌀10 мм получаем площадь сечения, равной 3,93 кв. см, а для 1 пог. м она будет в два раза больше – 7,86 кв. см.
Сечение арматуры, проложенной в верхней части, было взято с достаточным запасом, поэтому число арматуры в нижнем слое можно уменьшить до четырех. Тогда для нижней части площадь, согласно таблице составит 3,14 кв. см.
На заметку
Для расчета подобной плиты в панельном доме согласно имеющимся методикам расчета обычно применяют корректирующий коэффициент для учета также пространственной работы конструкции. Он позволяет примерно на 3–10 процентов сократить сечение.
Однако многие специалисты считают, что, в отличие от заводских, для монолитных плит его использование не столь уж обязательно, поскольку при таком подходе возникает необходимость в ряде дополнительных расчетов, к примеру, на раскрытие трещин и прочих.
И потом, если центральную часть армировать стержнями большего диаметра, то прогиб посередине будет изначально меньше. При необходимости его можно достаточно просто устранить или скрыть под финишной отделкой.
Пример расчета монолитной плиты перекрытия в виде прямоугольника
Очевидно, что в подобных конструкциях момент, действующий по отношению к оси абсцисс, не может равняться его значению, относительно оси аппликат. Причем чем больше разброс между ее линейными размерами, тем больше она будет похожа на балку с шарнирными опорами. Иначе говоря, начиная с какого-то момента, величина воздействия поперечной арматуры станет постоянной.
На практике неоднократно была показана зависимость поперечного и продольного моментов от значения λ = l2 / l1:
- при λ > 3, продольный больше поперечного в пять раз;
- при λ ≤ 3 эту зависимость определяют по графику.
Допустим, требуется рассчитать прямоугольную плиту 8х5 м. Учитывая, что расчетные пролеты это и есть линейные размеры помещения, получаем, что их отношение λ равно 1.6. Следуя кривой 1 на графике, найдем соотношение моментов. Оно будет равно 0.49, откуда получаем, что m2 = 0.49*m1.
Далее, для нахождения общего момента значения m1 и m2 необходимо сложить. В итоге получаем, что M = 1.49*m1. Продолжим: подсчитаем два изгибающих момента – для бетона и арматуры, затем с их помощью и расчетный момент.
Теперь вновь обратимся к вспомогательной таблице, откуда находим значения η1, η2 и ξ1, ξ2. Далее, подставив найденные значения в формулу, по которой вычисляют площадь сечения арматуры, получаем:
- Fa1 = 3.845 кв. см;
- Fa2 = 2 кв. см.
В итоге получаем, что для армирования 1 пог. м. плиты необходимо:
- продольная арматура:пять 10-миллиметровых стержней, длина 520 -540 см, Sсеч. – 3.93 кв. см;
- поперечная арматура: четыре 8-миллиметровых стержня, длина 820-840 см, Sсеч. – 2.01 кв.см.
2020 stylekrov.ru
Источник:
Расчет железобетонной плиты перекрытия
Монолитные изделия могут быть сделаны без применения подъемных кранов. Но, несмотря на массу преимуществ монолитных плит, немало людей попросту отказывается от их устройства. Причиной тому является невозможность проведения надлежащего расчета плиты на стадии планировочных работ. Именно этот фактор послужил толчком к созданию данной статьи. В ней описан весь процесс расчета монолитного ж/б перекрытия.
Этап 1. Определение расчетной длины плиты
Длина плиты и проектная длина плиты это очень разносторонние вещи. Фактическая длина плиты может быть любой. А вот расчетная длина (другими словами пролет балки, а в нашем случае плиты перекрытия) имеет совсем иные значения.
Пролетом зовется расстояние в свету (минимальное расстояние между наиболее выпуклыми частями соседних элементов) между несущими стенами. А если быть точнее, то это рассчитываемая от стен длина и ширина помещения.
И само собой, за счет опирания на стены, по факту плита будет длиннее.
Следует отметить, что монолитная железобетонная плита может опираться на несущие стены, возведенные из следующих материалов: кирпич, камень, газо- и пенобетон, керамзитобетон, шлакоблок. Если в качестве опор под плиту используется кладка из недостаточно прочных материалов (газобетон, пенобетон, керамзитобетон, шлакоблок), то этот материал должен пройти расчеты на соответствующие нагрузки.
В статье приведен пример однопролетной плиты перекрытия, которая опирается на две несущих стены. Расчет плиты при условии ее опирания на четыре несущих стены — рассмотрен не будет.
Примем значение расчетной длины плиты l=4 м.
Этап 2. Определение размеров плиты, класса арматуры и бетона
Без наличия этих параметров (а они нам неизвестны по определению) нами не будет выполнен расчет. Исходя из этого, неизвестные значения нами будут заданы самостоятельно.
Зададим параметры плиты: высота h=10 см; ширина b=100 см. Данная условность поможет определить значение 1 расчетного метра. Опираясь на это, при изготовлении плиты (к примеру) длиной 4 и шириной 6 метров, для каждого из 6 метров предстоит принять параметры, определенные для одного расчетного метра.
Итак, нами были приняты значения высоты h=10см, ширины b=100 см, а также класс бетона B20 и арматуры А400.
Этап 3: Определение опор
В зависимости от типа и тяжести стен, а также от ширины опирания на них плиты перекрытия, несущий элемент может быть рассмотрен как шарнирно опертая бесконсольная балка или же, как балка с жестким защемлением на опорах. В данной статье будет рассмотрен наиболее распространенный случай — шарнирно опертая безконсольная балка.
Этап 4: Определение предполагаемой нагрузки на плиту
Балка может испытывать самые разнообразные нагрузки. Строительная механика «гласит», что все неподвижное, прибитое, приклеенное или другим способом устроенное на плите перекрытия становится статистической и в тоже время постоянной нагрузкой. А все что движется (что передвигается разными способами) по балке становится динамической (как правило временной) нагрузкой. Все это к тому, что в данном примере нами будут убраны различия между этими видами нагрузок.
Сосредоточенная нагрузка измеряется в килограмм-силах (кгс или кг) либо в Ньютонах. Распределительная нагрузка измеряется в килограмм-сила-метр (кгс/м).
Расчет плиты перекрытия в жилых домах, как правило, нацелен на определение распределительной нагрузки q1=400 кг/м². Вес плиты высотой 100 мм добавит к этому типу нагрузи около 250 кг/м². А стяжка и чистовое покрытие (возьмем керамическую плитку) приплюсуют сюда еще дополнительных 100 кг/м².
В приведенной выше распределительной нагрузке учитывается большая часть из тех нагрузок, которые имеют отношение к перекрытиям в жилых домах. Однако это ни в коей мере не означает, что расчет конструкции с учетом более значимых нагрузок не может иметь место. Отнюдь, просто в нашем случае взятые значения являются усредненными. В тоже время мы в любом случае подстрахуемся и умножим итоговое значение нагрузки на так называемый коэффициент надежности γ=1.2.
q=(400+250+100)1.2=900 кг/м²
Поскольку наши расчеты опираются на плиту шириной 1 м, то нагрузка являющаяся распределительной, может быть рассмотрена как плоская (работающая на плиту перекрытия по оси «y» и измеряемая в кг/м).
Этап 5: Определение максимального изгибающего момента балки
Максимальный изгибающий момент плиты опирающейся на две стены находится по ее центру:
Для пролета l=4 м Мmax=(900х4²)/8=1800 кг·м
Этап 6: Расчетные допущения
Согласно СНиП 52-01-2003 и СП 52-101-2003 в основе расчета ж/б элементов лежит следующая информация:
- Сопротивление бетона растяжению принимается нулевым значением. Причиной такого допущения является разница в сопротивлении растяжения между бетоном и арматурой. Значение сопротивления арматуры к таким нагрузкам превосходит бетон приблизительно в 100 раз. В итоге получается, что на растяжении работает только арматура.
- Сопротивление бетона сжатию принимается значением определенным равномерным распределением по существующей зоне сжатия. В итоге данное сопротивление бетона не должно приниматься более чем расчетное сопротивление Rb.
- Значение максимального растяжения в арматуре не должно превышать значение расчетного сопротивления Rs..
Чтобы устранить возможность образования эффекта пластического шарнира (где значение изгибающего момента отдалена от нуля, вследствие чего происходит обрушение конструкции) соотношение ξ сжатой зоны бетона «y» расстоянию от центра тяжести арматуры до верха балки h0, ξ=у/ho (6.1) не должно превышать предельное значение ξR.
Для определения предельного значения используется следующая формула:
Формула (6.2) является эмпирической (опирающейся на непосредственное наблюдение) и выведена при проектировании железобетонных конструкций. Значение Rs — это сопротивление арматуры измеряемое в мПа (миллипаскалях). В тоже время, данный этап работ допускает использование таблицы 1.
Значение aR обозначает расстояние от центральной точки поперечного сечения арматуры до нижнего уровня балки. С увеличением этого расстояния (его минимальное значение не должно быть не меньше диаметра самой арматуры и не меньше 10 мм) усиливается сцепление арматуры с бетоном. Однако вместе с этим уменьшается полезное значение h0.
Таблица 1. Граничные значения относительной высоты сжатой зоны бетона:
Класс арматуры | A240 | A300 | A400 | A500 | B500 |
Значение ξR | 0,612 | 0,577 | 0,531 | 0,493 | 0,502 |
Значение aR | 0,425 | 0,411 | 0,390 | 0,372 | 0,376 |
Если расчеты проводятся недостаточно квалифицированными проектировщиками (грубо говоря — не профессионалами) с целью предостережения, рекомендуется занижать значение сжатой зоны ξR в 1.5 раза.
В нашем случае, а=200 мм.
Если ξ ≤ ξR или же в сжатой зоне отсутствует арматура, для проверки прочности бетона используется следующая формула:
Смысл данной формулы следующий: поскольку любой момент может быть представлен в виде силы работающей с плечом, то в отношении бетона должно быть применено вышеприведенное условие.
При том же ξ ≤ ξR для проверки прочности прямоугольных сечений с одиночной арматурой используется следующая формула:
Смысл данной формулы следующий: согласно расчету, арматура должна выдерживать нагрузку равную той, что выдерживает бетон. Поскольку как первый, так и последний испытывает действие одинаковой силы с аналогичным плечом.
Данная расчетная схема не является единственной, расчет может быть произведен относительно центра тяжести приведенного сечения.
Но стоит заметить, что железобетон является композитным (искусственно созданным сплошным материалом с неоднородным составом) материалом, за счет чего его расчет по предельным напряжениям (при сжимании или растяжении) возникающим в поперечном сечении ж/б балки достаточно непростая задача.
В тоже время железобетон в этом не одинок. Разброс прочностных характеристик встречается у таких конструкционных материалов как сталь, алюминий и т.п. Сюда же можно отнести древесину, кирпич, а также полимерные композитные материалы.
Для определения высоты сжатой зоны бетона при отсутствии в ней арматуры используется следующая формула:
Для возможности определения сечения арматуры нужно определить коэффициент am:
Если аm тогда необходимость наличия арматуры в сжатой зоне полностью отпадает. В свою очередь для определения аR используется таблица 1.
В случае отсутствия арматуры в сжатой зоне, для определения сечения арматуры используется следующая формула:
Пример расчета монолитной железобетонной плиты перекрытия
Обратите внимание, расчет будет проводиться на примере железобетонной бесконсольной плиты, которая находится на опорах шарнирного типа и подвергается равномерно распределительной нагрузке.
Этап 7: Подбор сечения арматуры
Согласно СНиП 2.03.01-84 «Бетонные и железобетонные конструкции» расчетное сопротивление растягивающим усилиям в отношении арматуры класса А400 составляет Rs=3600 кгс/см² (355 МПа). Согласно тому же СНиПу, расчетное сопротивление сжимающим нагрузкам для бетона класса B20 имеет значение Rb=117кгс/см² (11.5 МПа). Другие необходимые для расчета параметры и нагрузки в отношении плиты, нами были определены ранее.
Используя формулу (6.6) определим значение коэффициента аm: аm=1800/(1·0.08²·1170000)=0.24038
Примечание: с целью соблюдения размерности, значение расчетного сопротивление было приведено в кг/м².
Согласно таблице 1 полученное в результате расчетов значение является ниже предельного (0.24038 As=117·100·8(1-√‾(1-2·0.24038))/3600=7.265 см².
Примечание: с целью упрощения вычисления, значения поперечного сечения были представлены в сантиметрах, а величины расчетных сопротивлений в кг/см².
Получается, что для армирования одного погонного метра понадобится 5 стержней Ø14 мм и с ячейкой 200 мм. Совместно с этим площадь сечения арматуры будет равняться 7.69 см². Тут же стоит отметить, что для повышения продуктивности подбора арматуры можно использовать таблицу 2:
Диаметр, мм | Площадь поперечного сечения, см², при числе стержней | |||||||||
Масса 1 пог. м, кг | ||||||||||
Проволочная и стержневая арматура | ||||||||||
0.071 | 0,14 | 0,21 | 0,28 | 0,35 | 0,42 | 0,49 | 0,57 | 0,64 | 0,052 | |
0,126 | 0,25 | 0,38 | 0,5 | 0,63 | 0,76 | 0,88 | 1,01 | 1,13 | 0,092 | |
0,196 | 0,39 | 0,59 | 0,79 | 0,98 | 1,18 | 1,37 | 1,57 | 1,77 | 0,144 | |
0,283 | 0,57 | 0,85 | 1,13 | 1,42 | 1,7 | 1,98 | 2,26 | 2,55 | 0,222 | |
0,385 | 0,77 | 1,15 | 1,54 | 1,92 | 2,31 | 2,69 | 3,08 | 3,46 | 0,302 | |
0,503 | 1,01 | 1,51 | 2,01 | 2,51 | 3,02 | 3,52 | 4,02 | 4,53 | 0,395 | |
0,636 | 1,27 | 1,91 | 2,54 | 3,18 | 3,82 | 4,45 | 5,09 | 5,72 |
Источник:
Расчет плиты перекрытия: считаем нагрузку и подбираем материалы для строительства
Монолитная плита перекрытия всегда была хороша тем, что изготавливается без применения подъемных кранов – все работы ведутся прямо на месте. Но при всех очевидных преимуществах сегодня многие отказываются от такого варианта из-за того, что без специальных навыков и онлайн-программ достаточно сложно точно определить важные параметры, как сечение арматуры и площадь нагрузки.
Поэтому в этой статье мы поможем вам изучить расчет плиты перекрытия и его нюансы, а также познакомим с основными данными и документами. Современные онлайн-калькуляторы – дело хорошее, но если речь идет о таком ответственном моменте, как перекрытие жилого дома, советуем вам перестраховаться и лично все пересчитать!
Для частных застройщиков создано большое количество полезных инструментов, один из них — программа для расчета перекрытия. Простые калькуляторы и сложные технические инструменты архитекторов помогут правильно рассчитать нагрузки и не ошибиться при постройке дома.
Интерфейс программы для расчета плит перекрытия Вернуться к оглавлению
Перекрытия: принцип и важность расчетов
Перед тем как использовать программу для расчета перекрытия, надо определиться с материалом конструкции.
При частном строительстве используют три основных типа перекрытия:
Деревянное
Несущими балками при устройстве деревянного перекрытия выступают: брус (бревно), металлический профиль (швеллер, двутавр, уголок) или железобетонные элементы. Балки застилаются досками, образуя плиты перекрытия. Основываясь при вычислениях на строительных нормах, сечение несущей балки определяется путем суммирования её веса и нагрузки эксплуатационной. Примерная нагрузка межэтажного деревянного перекрытия 400кг/ м². Если не предполагается активная эксплуатация данной зоны, например, в случае создания и обустройства чердака или пространства под крышей, принимаемая во внимание нагрузка может быть уменьшена.
Схема устройства плит перекрытия из дерева
В длину каждой балки из дерева закладывается минимум 24 см, необходимых для её крепления. Важный элемент расчета деревянных конструкций – прогиб балки. Правильные вычисления помогут выбрать оптимальное сечение элемента при заданной длине. Это предотвратит изменение геометрии помещения, и повысит безопасность перекрытия.
Количество необходимых балок рассчитывается, исходя из монтажного шага. Укладку производят, перекрывая узкий пролет, с интервалом от двух с половиной до четырех метров. В свою очередь, шаг зависит от ширины расположения каркасных стоек.
Железобетонные монолитные
В качестве несущих при устройстве монолитных ж/б конструкций перекрытий в доме используются металлические профили или ж/б балки. Плиты перекрытия формируются из монолитных железобетонных деталей. Это позволяет выдерживать большие нагрузки, перевязывать широкие прогоны.
Расчет монолитного перекрытия в специальной программе
При вычислении нагрузки на двутавровую балку её вес без учета стяжки рассчитывается исходя из значения 350 кг/ м², а учитывая стяжку – 500 кг/ м². Монтажный шаг при укладке принято делать равным 1 метру.
При создании ж/б перекрытия работает правило: длина проема должна быть в 20 раз больше высоты балки. Это допустимый минимум. Высота и ширина ж/б элемента так относится друг к другу, как 7 к 5. При расчете перекрытия также необходимо учитывать вероятный изгиб, геометрию плит, выбор армирования и характеристики бетона. В видео показан процесс расчета монолитного перекрытия.
Железобетонные сборные
Элементы для изготовления подобных перекрытий имеют стандартные размеры и специальных расчетов не требуют. Необходимо определиться с их количеством и нагрузкой на общее основание строения.
Предварительный подсчет поможет значительно сэкономить при закупке строительных материалов. Кроме финансовых выгод вычисления нагрузок дадут гарантию безопасности строения.
Если прочность перекрытия не учитывать, постройка может обвалиться и привести не только к дополнительным затратам, но и к ещё более плачевным последствиям. Правильный предварительный расчет – основа безопасности строения.
Вернуться к оглавлению
Программы для архитекторов
Профессиональная работа по проектированию зданий и сооружений невозможна без использования технических программ для расчета перекрытия. Если строительство домов является основным занятием, стоит приложить усилия и изучить инструменты по проектированию.
Интерфейс программы ArchiCad для расчета перекрытия
Самыми распространенными техническими инженерными программами в проектных организациях являются ArchiCad, AutoCad, Лира, NormCAD и SCAD.
Плюсы инженерных программ по проектированию:
- Универсальность. Любая из программ может быть использована для построения и расчета всех видов перекрытий.
- Точность. При подсчете учитывается большое количество факторов, способных повлиять на нагрузку и прочность конструкции. Такая детальность в подсчетах позволяет получить максимально точные данные.
- Визуализация. Получив результат, строитель наглядно видит, что и как он должен смонтировать, чтобы получить гарантированный результат.
- Подготовка проектной документации. Для профессиональных застройщиков с помощью инженерных программ можно подготовить документацию, которая принимается всеми проверяющими органами.
Недостатки инженерных программ по проектированию:
- Утверждение, что подобные инструменты легко освоить — неверно. Зачастую для их использования необходимо специальное техническое образование, знание сопромата и унифицированных строительных норм.
- Объем информации: для работы с инженерными программами требуется обладать большим количеством данных, в противном случае можно получить неожиданный результат вычислений.
- Ограничение доступа: программы лицензированные, для использования необходима покупка прав на использование.
Вернуться к оглавлению
Калькуляторы и бесплатные программы для проектирования
Для постройки собственного дома тратить время на изучение сложных программ для расчета перекрытия излишне. Специально для тех, кто строит дом своими руками, разработаны несложные инструменты.
Чертеж плиты перекрытия созданный в специальной программе
Среди подобного софта есть платный и бесплатный, предназначенный для скачивания, и работающий on-line. Программы для расчета деревянных перекрытий. Если дом, который предстоит построить, деревянный, то для расчета перекрытия удобнее воспользоваться простым софтом.
Ultralam
Инструмент для подсчета нагрузки балок из клееного и профилированного бруса. Основное направление – многопролетные элементы.
Расчет деревянных балок Владимира Романова
Простая программа, считающая нагрузки на деревянные балки. При частном строительстве домов, инструмент помогает подобрать элемент правильно.
Программы для расчета металлических и железобетонных перекрытий
Среди инструментов для вычисления ж/б перекрытий много предложений программного обеспечения.
Интерфейс программы Ultralam для расчета перекрытия
Часть софта необходимо купить для персонального использования. Но также в сети есть возможность скачать бесплатно программы для расчета плит перекрытия.
СИТИС: Форт
Форт — российская разработка ООО «Ситис», предназначенная для подсчета ж/б перекрытия плитами свободной геометрии.
Особенности программы:
- удобный интерфейс, простой в освоении;
- конструкция, не требуется самостоятельного построения схемы — вычисление производится автоматически, на основании запрошенных у пользователя данных;
- удобная цветовая визуализация результата;
- возможность выбирать уровень точности расчетов;
- учет характеристик бетона и возможность пополнения библиотеки материалов.
Способ основан на требованиях актуальных СНиП, сертифицирован ГОССТРОЕМ РОССИИ. Предоставляется этот софт на платной основе.
Перекрытия
Инструмент предназначен для исчисления замены нагрузок на плиты перекрытия.
С её помощью возможно вычисление общей нагрузки как на одну плиту, так и на конструкцию в целом. Для расчета монолитного перекрытия программа не рассчитана.
Позволяет:
- задавать точечные нагрузки;
- редактировать предыдущие проекты и их детали;
- работать с большими площадями перекрытий.
Версии программы периодически обновляются, добавляя ей дополнительный функционал. Скачанный софт необходимо оплатить.
Beam
Инструмент для расчета нагрузки на металлические многопролетные балки:
- определяет прочность несущей конструкции;
- позволяет подобрать верное сечение элемента;
- задает параметры максимальных и минимальных напряжений, углов поворота и прогибов.
Программа является частной разработкой, не сертифицирована. Человек, скачавший её, имеет право бесплатного ознакомления в течение 5 дней.
Интерфейс программы Beam для расчета балок перекрытия
В дальнейшем пользование полным функционалом платное.
Balka
Инструмент для вычисления нагрузки на однопролетные балки:
- определяет жесткость и прочность элементов конструкции;
- помогает с выбором сечения балок.
Является бесплатной версией Beam, поэтому имеет ряд ограничений.
Строитель + расчет железных балок
Программа от частного разработчика, позволяющая рассчитать нагрузку на ж/б ригели.
EURYDICE
Инструмент для расчета и проектирования ж/б перекрытий, предназначенный для сборно-монолитных конструкций.
Балка v2-0-2
Белорусская программа для проектирования любых видов балок перекрытия. Для использования в России подойдут расчеты по металлическим балкам. Белорусские СНиП идентичны российским. Программа лицензированная, платная.
Для домов из дерева большинство программ представляют собой on-line калькуляторы, которые можно найти в открытом доступе Интернета.
Также в сети существуют программы для перекрытий из металла и железобетона. Чтобы воспользоваться этими инструментами, следует ввести в поисковую строку фразу «программа для расчета перекрытия» или «программа для перекрытий». Останется только подобрать подходящий инструмент и воспользоваться им.